
Hybrid estimators for small diffusion processes based on
reduced data

1Yusuke Kaino and 1,2Masayuki Uchida
1Graduate School of Engineering Science, Osaka University and
2Center for Mathematical Modeling and Data Science (MMDS),

Osaka University, CREST, JST

Toyonaka, Osaka 560-8531, Japan

Asymptotical Statistics of Stochastic Processes XI (SAPS XI)
at ”New Peterhof” (Steklov Mathematical Institute), St Petersburg

17-21 July 2017

1



Plan of today’s talk

Motivation for this talk

Initial Bayes type estimators of both drift and volatility parameters
for small diffusion processes based on reduced data with sample size n0 (≤ n)
in the case when ϵ → 0 and n0 → ∞.

hybrid estimator with the initial Bayes type estimator for small diffusion
processes in the case when 1

ϵ
√
n
= O(1).

Example and simulation results
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1. Introduction
We treat a d-dimensional small diffusion process defined by the following
stochastic differential equation{

dXt = a(Xt, α)dt+ ϵb(Xt, β)dwt, t ∈ [0, T ], ϵ ∈ (0, 1],
X0 = x0,

(1)

where
ϵ and T are known constants, x0 is a deterministic initial condition,
w is an r-dimensional standard Wiener process,
θ = (α, β) ∈ Θ = Θα ×Θβ with Θα and Θβ being compact convex subsets of Rp

and Rq, respectively,
a : Rd ×Θα → Rd and b : Rd ×Θβ → Rd ⊗ Rr, and θ∗ = (α∗, β∗) ∈ Int(Θ) is
the true value of θ.
The data are discrete observations Xn = (Xti)0≤i≤n with ti = ihn, hn = T/n.
We will consider the case when ϵ → 0, n → ∞, 1

ϵ
√
n
= O(1), and

there exists γ ∈ (0, 1] satisfying that ϵ(
√
n)γ = O(1).
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History

A family of small diffusion processes defined by (1) is an important class of dynamical
systems with small perturbations. For dynamical systems with small perturbations, see
Azencott (1982) and Freidlin and Wentzell (1998).

Statistical inference for continuously observed small diffusion processes is well developed
by Kutoyants (1984, 1994), Yoshida (1992a, 2003), Iacus (2000), Iacus and Kutoyants
(2001), Uchida and Yoshida (2004a), Brouste et. al. (2014) and references therein.

Furthermore, there are a number of researches on parametric inference for discretely
observed small diffusion processes, see Genon-Catalot (1990), Laredo (1990), Sørensen
(2000, 2012), Sørensen and Uchida (2003), Uchida (2003, 2004, 2006, 2008), Gloter and
Sørensen (2009), Guy et. al. (2014) and Nomura and Uchida (2016).

For applications of small diffusion processes to mathematical finance and mathematical
biology, see Yoshida (1992b), Kunitomo and Takahashi (2001), Takahashi and Yoshida
(2004), Uchida and Yoshida (2004b), Fuchs (2013), Guy et. al. (2014, 2015) and
references therein.
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Motivation

In order to explain the goal of this paper, we first review the joint estimation of both drift and
volatility parameters for discretely observed small diffusion processes.

Joint estimation

Set A⊗2 = AA⋆ and C[A] = tr(CA⋆) for matrices A and C of the same size, where ⋆ means
the transpose. Let B(x, β) = bb⋆(x, β), ∆Xi = Xti −Xti−1 , ai−1(α) = a(Xti−1 , α) and
Bi−1(β) = B(Xti−1 , β). The quasi-log likelihood function is defined as

Uϵ,n(α, β) = −
1

2

n∑
i=1

{
log detBi−1(β) + (ϵ2hn)

−1B−1
i−1(β)

[
(∆Xi − hnai−1(α))

⊗2
]}

.

The joint maximum likelihood (ML) type estimators α̂
(J)
ϵ,n and β̂

(J)
ϵ,n are defined as

Uϵ,n(α̂
(J)
ϵ,n , β̂

(J)
ϵ,n ) = sup

α∈Θα,β∈Θβ

Uϵ,n(α, β).

Sørensen and Uchida (2003) showed that under some regularity conditions, as ϵ → 0, n → ∞
and 1

ϵ
√

n
= O(1),(

ϵ−1(α̂
(J)
ϵ,n − α∗),

√
n(β̂

(J)
ϵ,n − β∗)

)
d→ (ζ1, ζ2) ∼ Np+q(0, I(θ

∗)−1), (2)

where
d→ means convergence in distribution, Np+q(0, I(θ∗)−1) is the normal random variable

with mean zero and the covariance matrix I(θ∗)−1 and I(θ∗) is the asymptotic Fisher
information matrix, see Section 2 below.
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Adaptive estimation

From the viewpoint of numerical analysis, the joint ML type estimator is unstable when the dimension of Θ is
large. For that reason, we consider the adaptive ML type estimators. In the same way as Uchida and Yoshida
(2012) for ergodic diffusion models, the quasi-log likelihood functions are defined as

V
(1)
ϵ,n (β) = −

1

2

n∑
i=1

{
log detBi−1(β) + (ϵ

2
hn)

−1
B

−1
i−1(β)

[
(∆Xi)

⊗2
]}

,

V
(2)
ϵ,n (α, β) = −

1

2

n∑
i=1

(ϵ
2
hn)

−1
B

−1
i−1(β)

[
(∆Xi − hnai−1(α))

⊗2
]
.

The adaptive ML type estimators α̂(E)
ϵ,n and β̂(E)

ϵ,n are defined as

V
(1)
ϵ,n (β̂

(E)
ϵ,n ) = sup

β∈Θβ

V
(1)
ϵ,n (β), (3)

V
(2)
ϵ,n (α̂

(E)
ϵ,n , β̂

(E)
ϵ,n ) = sup

α∈Θα

V
(2)
ϵ,n (α, β̂

(E)
ϵ,n ). (4)

Then, under some regularity conditions, as ϵ → 0, n → ∞ and 1
ϵ2

√
n

= o(1),(
ϵ
−1

(α̂
(E)
ϵ,n − α

∗
),
√
n(β̂

(E)
ϵ,n − β

∗
)
)

d→ (ζ1, ζ2) ∼ Np+q(0, I(θ
∗
)
−1

).

In the case of small diffusion process, the adaptive ML type estimators (3) and (4), which are obtained by the

same method as the case of the ergodic diffusion processes, are worse than the joint ML type estimators α̂(J)
ϵ,n

and β̂(J)
ϵ,n since the stronger condition 1

ϵ2
√

n
= o(1) is needed to get the same asymptotic properties as (2).

Therefore, the aim of this talk is to propose the adaptive ML type estimator which has the same asymptotic
normality as (2) under 1

ϵ
√

n
= O(1) from the viewpoint of numerical analysis.
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In order to compute the adaptive ML type estimators, it is indispensable to get a suitable
initial estimator for optimization of quasi-log likelihood function.

Nomura and Uchida (2016) obtained the initial Bayes type estimator from full data of
small diffusion processes. They considered the hybrid estimator with the initial Bayes
type estimator and showed that the hybrid estimator has asymptotic normality and
convergence of moments.

However, it takes much time to compute the initial Bayes type estimator when the
sample size is large.

Kutoyants (2017) considered the multi-step ML type estimation procedure for ergodic
diffusion processes from continuous path data on [0, T ]. He proposed the multi-step
estimator with the initial estimator derived from the reduced continuous path data on
[0, T0] for T0 ≤ T and showed asymptotic efficiency of the multi-step ML type estimator
as T0 → ∞.

Uchida and Yoshida (2017) studied the initial Bayes type estimator based on reduced
sampled data for a discretely observed ergodic diffusion processes and they showed
asymptotic normality and convergence of moments for the adaptive ML type estimator
with the initial Bayes type estimator.
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In this talk, we consider the initial Bayes type estimator based on reduced sampled data for a
discretely observed small diffusion process by applying the initial estimator with reduced data for
a ergodic diffusion process in Kutoyants (2017) and Uchida and Yoshida (2017) to the initial
Bayes type estimator for a small diffusion model from the viewpoint of numerical analysis.

The adaptive ML type estimator with the initial Bayes type estimator,
which is called the hybrid estimator with the initial Bayes type estimator,
is proposed for a small diffusion process.

Moreover, it is shown that the proposed hybrid estimator has asymptotic normality and
convergence of moments by applying the Ibragimov-Has’minskii program (1972a,b, 1981) and
the polynomial type large deviation inequality for statistical random field in Yoshida (2011) to
the case of discretely observed small diffusion processes.

Needless to say, the convergence of moments and the polynomial type large deviation inequality
of statistical random field play an important part to show the mathematical validity of
asymptotic expansions and asymptotic unbiasedness of information criteria for model selection,
see Yoshida (1992a, 1992b), Uchida and Yoshida (2001, 2004a, 2004b, 2006) and Uchida (2010).
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2. Initial Bayes type estimators with reduced data and hybrid estimators
Although the data are discrete observations Xn = (Xti)0≤i≤n with ti = ihn, hn = T/n,
from the viewpoint of numerical analysis, we consider
initial estimators with reduced data Yn0 = (Xti)0≤i≤n0 , where n0 =

[
n
c

]
for c ≥ 1.

For a matrix A, we define ∥A∥ = tr(AA⋆)1/2 and | · | denotes the Euclidian norm.

Let
p→ and

d→ be the convergence in probability and convergence in distribution,
respectively.
Let X0

t be the solution of the ordinary differential equation corresponding to ϵ = 0, i.e.,
dX0

t = a(X0
t , α

∗)dt, X0
0 = x0.

Let Ck,l
↑ (Rd ×Θ;Rd) denote the space of all functions f satisfying the following

conditions:

(i) f(x, θ) is an Rd-valued function on Rd ×Θ and is continuously differentiable with
respect to x and θ up to order k and l, respectively.

(ii) for |n| = 0, 1, . . . , k and |ν| = 0, 1, . . . , l, there exists C > 0 such that
sup
θ∈Θ

|δν∂nf | ≤ C(1 + |x|)C for all x.

Here, n = (n1, . . . , nd) and ν = (ν1, . . . , νl) are multi-indices, l = dim(Θ),
|n| = n1 + · · ·+ nd, |ν| = ν1 + · · ·+ νl, ∂

n = ∂n1
1 · · · ∂nd

d , ∂i = ∂/∂xi, i = 1, . . . , d,
δν = δν11 · · · δνll , δj = ∂/∂θj , j = 1, . . . , l.
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In this talk, we make the assumptions as follows.

[A1] (i) There exists K > 0 such that for all x, y ∈ Rd,
sup

α∈Θα

|a(x, α)− a(y, α)|+ sup
β∈Θβ

∥b(x, β)− b(y, β)∥ ≤ K|x− y|.

(ii) inf
x,β

detB(x, β) > 0.

[A2] a(x, α) ∈ C6,4
↑ (Rd ×Θα;Rd), b(x, β) ∈ C6,4

↑ (Rd ×Θβ ;Rd ⊗ Rr).

The quasi log-likelihood functions U
(1)
ϵ,n(α) and U

(2)
ϵ,n(α, β) with reduced data Yn0 , and

the quasi log-likelihood functions U
(3)
ϵ,n(α, β) and U

(4)
ϵ,n(α, β) with full data Xn are defined

as follows.

U (1)
ϵ,n0

(α) = − 1

2ϵ2hn

n0∑
i=1

|∆Xi − hnai−1(α)|2 ,

U (2)
ϵ,n0

(α, β) = − 1

2ϵ4h2
n

n0∑
i=1

∥∥(∆Xi − hnai−1(α))
⊗2 − (ϵ2hn)Bi−1(β)

∥∥2 ,
U (3)

ϵ,n(α, β) = − 1

2ϵ2hn

n∑
i=1

B−1
i−1(β)

[
(∆Xi − hnai−1(α))

⊗2] ,
U (4)

ϵ,n(α, β) = −1

2

n∑
i=1

{
log detBi−1(β) + (ϵ2hn)

−1B−1
i−1(β)

[
(∆Xi − hnai−1(α))

⊗2]} .
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Note that under [A1]-[A2], as 1
ϵ
√
n
= O(1), uniformly in θ ∈ Θ,

ϵ2
{
U (1)

ϵ,n0
(α)− U (1)

ϵ,n0
(α∗)

}
p→ Y(1)(α),

hn

{
U (2)

ϵ,n0
(α∗, β)− U (2)

ϵ,n0
(α∗, β∗)

}
p→ Y(2)(β),

ϵ2
{
U (3)

ϵ,n(α, β
∗)− U (3)

ϵ,n(α
∗, β∗)

}
p→ Y(3)(α),

hn

{
U (4)

ϵ,n(α
∗, β)− U (4)

ϵ,n(α
∗, β∗)

}
p→ Y(4)(β),

where

Y(1)(α) = −1

2

c

T

∫ T/c

0

∣∣a(X0
t , α)− a(X0

t , α
∗)
∣∣2 dt,

Y(2)(β) = −1

2

c

T

∫ T/c

0

∥∥B(X0
t , β)−B(X0

t , β
∗)
∥∥2 dt,

Y(3)(α) = −1

2

1

T

∫ T

0

B(X0
t , β

∗)−1
[(
a(X0

t , α)− a(X0
t , α

∗)
)⊗2
]
dt,

Y(4)(β) = −1

2

1

T

∫ T

0

{
tr
[
B(X0

t , β)
−1B(X0

t , β
∗)− Id

]
+ log

detB(X0
t , β)

detB(X0
t , β

∗)

}
dt.
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[A3] There exist positive constants χ(1), χ(2), χ(3) and χ(4) such that for all α ∈ Θα and
β ∈ Θβ ,

Y(1)(α) ≤ −χ(1)|α− α∗|2,
Y(2)(β) ≤ −χ(2)|β − β∗|2,
Y(3)(α) ≤ −χ(3)|α− α∗|2,
Y(4)(β) ≤ −χ(4)|β − β∗|2.

[A4] We assume that 1
ϵ
√
n
= O(1) as ϵ → 0 and n → ∞, and there exists γ ∈ (0, 1]

satisfying that ϵ(
√
n)γ = O(1). Moreover, r2 ≤ 2r1γ for r1, r2 ∈ (0, 1].
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The statistical random fields H(1)
ϵ,n0,r1(α) and H(2)

ϵ,n0,r2(α, β) with reduced data Yn0 are
given by

H(1)
ϵ,n0,r1(α) = ϵ2−2r1U (1)

ϵ,n0
(α),

H(2)
ϵ,n0,r2(α, β) =

1

(
√
n0)2−2r2

U (2)
ϵ,n0

(α, β).

We assume that the prior densities π1(α) and π2(β) are continuous and satisfy that
0 < inf

α∈Θα

π1(α) ≤ sup
α∈Θα

π1(α) < ∞ and 0 < inf
β∈Θβ

π2(β) ≤ sup
β∈Θβ

π2(β) < ∞.

The initial Bayes type estimators α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2 with reduced data Yn0 are defined

by

α̃(1)
ϵ,n0,r1 =

∫
Θα

α exp
{
H(1)

ϵ,n0,r1(α))
}
π1(α)dα∫

Θα
exp

{
H(1)

ϵ,n0,r1(α)
}
π1(α)dα

,

β̃(2)
ϵ,n0,r2 =

∫
Θβ

β exp
{
H(2)

ϵ,n0,r2(α̃
(1)
ϵ,n0,r1 , β)

}
π2(β)dβ∫

Θβ
exp

{
H(2)

ϵ,n0,r2(α̃
(1)
ϵ,n0,r1 , β)

}
π2(β)dβ

.

The hybrid estimators α̂ϵ,n and β̂ϵ,n with full data Xn are defined by

U (3)
ϵ,n(α̂ϵ,n, β̃

(2)
ϵ,n0,r2) = sup

α∈Θα

U (3)
ϵ,n(α, β̃

(2)
ϵ,n0,r2),

U (4)
ϵ,n(α̂ϵ,n, β̂ϵ,n) = sup

β∈Θβ

U (4)
ϵ,n(α̂ϵ,n, β).
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Proposition 1

Let r1, r2 ∈ (0, 1]. Assume [A1]–[A4]. Then, for all M > 0, as ϵ → 0 and n → ∞,

(i) sup
ϵ,n

Eθ∗

[∣∣∣ϵ−r1(α̃
(1)
ϵ,n0,r1 − α∗)

∣∣∣M] < ∞.

(ii) sup
ϵ,n

Eθ∗

[∣∣∣(√n0)
r2(β̃

(2)
ϵ,n0,r2 − β∗)

∣∣∣M] < ∞.

(iii) sup
ϵ,n

Eθ∗

[∣∣ϵ−1(α̂ϵ,n − α∗)
∣∣M] < ∞.

(iv) sup
ϵ,n

Eθ∗

[∣∣∣√n(β̂ϵ,n − β∗)
∣∣∣M] < ∞.

Remark 1
It follows from Proposition 1 that when r1, r2 ∈ (0, 1), the convergence rates of the

initial Bayes type estimators α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2 are ϵr1 and 1

(
√

n0)
r2 , respectively,

which means that the initial Bayes type estimators do not have optimal rates. However,
the hybrid estimators α̂ϵ,n and β̂ϵ,n have optimal rates, ϵ and 1√

n
, respectively.
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Let

I(θ∗) =

((
Iija (θ∗)

)
1≤i,j≤p

0

0
(
Iijb (β∗)

)
1≤i,j≤q

)
,

Iija (θ∗) =

∫ T

0

(
∂αia(X

0
t , α

∗)
)⋆

B(X0
t , β

∗)∂αja(X
0
t , α

∗)dt,

Iijb (β∗) =
1

2

1

T

∫ T

0

tr
{
B−1(∂βiB)B−1(∂βjB)(X0

t , β
∗)
}
dt.

Theorem 1
Assume [A1]–[A4]. Then, as ϵ → 0 and n → ∞,(

ϵ−1(α̂ϵ,n − α∗),
√
n(β̂ϵ,n − β∗)

)
d→ (ζ1, ζ2) ∼ Np+q(0, I(θ

∗)−1)

and

Eθ∗

[
f
(
ϵ−1(α̂ϵ,n − α∗),

√
n(β̂ϵ,n − β∗)

)]
→ E [f(ζ1, ζ2)]

for all continuous functions f of at most polynomial growth.
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3. Examples and simulation results
Consider the three-dimensional diffusion process defined by

dXt = a(Xt, α) + ϵb(Xt, β)dWt, t ∈ [0, 1], ϵ ∈ (0, 1],

X0 = (1, 1, 1)⋆ ,

where

a(Xt, α) =

 1−Xt,1 − 10 sin(α1Xt,2 + α2X
2
t,2)

2− α3Xt,2 − 10 sin(α4X
2
t,3)

3− α5Xt,3 − 10 sin(α6X
2
t,1)

 ,

b(Xt, β) =


√

β1(2 + cos(X2
t,3)) 0.01 0

0.01
√

β2(2 + cos(X2
t,1)) 0

0 0
√

β3(2 + cos(X2
t,2))

 .

Furthermore, α = (α1, α2, α3, α4, α5, α6), and β = (β1, β2, β3) are unknown parameters,
and their true values (α∗

1, α
∗
2, α

∗
3, α

∗
4, α

∗
5, α

∗
6, β

∗
1 , β

∗
2 , β

∗
3 ) = (3, 7, 5, 2, 4, 6, 1, 2, 3). The

parameter space is assumed to be Θ = [0.1, 50]9.
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The simulations were done for T = 1, h = 10−5, which means that n = 105.
Let c = 10 and n0 = n/10 = 104. We set ϵ = 0.05, 0.01.

The initial Bayes type estimator θ̃B = (α̃
(1)
ϵ,n0,r1 , β̃

(2)
ϵ,n0,r2) with reduced data Yn0 is

defined by

α̃(1)
ϵ,n0,r1 =

∫
Θα

α exp
{
H(1)

ϵ,n0,r1(α))
}
π1(α)dα∫

Θα
exp

{
H(1)

ϵ,n0,r1(α)
}
π1(α)dα

,

β̃(2)
ϵ,n0,r2 =

∫
Θβ

β exp
{
H(2)

ϵ,n0,r2(α̃
(1)
ϵ,n0,r1 , β)

}
π2(β)dβ∫

Θβ
exp

{
H(2)

ϵ,n0,r2(α̃
(1)
ϵ,n0,r1 , β)

}
π2(β)dβ

,

where H(1)
ϵ,n0,r1(α) and H(2)

ϵ,n0,r2(α, β) with reduced data Yn0 are given by

H(1)
ϵ,n0,r1(α) = ϵ2−2r1U (1)

ϵ,n0
(α),

H(2)
ϵ,n0,r2(α, β) =

1

(
√
n0)2−2r2

U (2)
ϵ,n0

(α, β).

It follows from Proposition 1 that

sup
ϵ,n

Eθ∗

[∣∣∣ϵ−r1(α̃(1)
ϵ,n0,r1 − α∗)

∣∣∣M] < ∞,

sup
ϵ,n

Eθ∗

[∣∣∣(√n0)
r2(β̃(2)

ϵ,n0,r2 − β∗)
∣∣∣M] < ∞.
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The Bayes type estimators are calculated with MpCN method proposed by Kamatani
(2014). MpCN algorithm is as follows.

Choose x ∈ Rd and µ ∈ Rd.

Generate r from the gamma distribution with the shape parameter d/2 and the
scale parameter ∥ x− µ ∥2 /2.

Generate x∗ = µ+ ρ1/2(x− µ) + (1− ρ)1/2r−1/2ω where w follows the standard
normal distribution.

Accept x∗ as x with probability min
{
1, p(x∗)∥x−µ∥2

p(x)∥x∗−µ∥2

}
. Otherwise, discard x∗.

In practice, it is advisable to take the two-stage procedure.

Choose x ∈ Rd and µ ∈ Rd. Run MpCN algorithm. Let (x1, . . . , xM ) be the
output.

Set x = xM , µ =
∑M

m=1
xm
M

and run MpCN algorithm again.

In this paper, we set ρ = 0.8.

We used 107 and 106 Markov chains and 106 and 105 burn-in iterations for estimation of
α and β, respectively.
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The adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) is defined as

α̂
(1)
A,n = arg sup

α∈Θα

U (1)
ϵ,n(α),

β̂
(2)
A,n = arg sup

β∈Θβ

U (2)
ϵ,n(α̂

(1)
A,n, β),

α̂
(3)
A,n = arg sup

α∈Θα

U (3)
ϵ,n(α, β̂

(2)
A,n),

β̂
(4)
A,n = arg sup

β∈Θβ

U (4)
ϵ,n(α̂

(3)
A,n, β).

In order to compute the ML type estimator, we used optim() with the ”L-BFGS-B”
method in the R Language.

19



The hybrid estimators α̂ϵ,n and β̂ϵ,n with full data Xn are computed as follows.

U (3)
ϵ,n(α̂ϵ,n, β̂

(2)
ϵ,n) = sup

α∈Θα

U (3)
ϵ,n(α, β̂

(2)
ϵ,n),

U (4)
ϵ,n(α̂ϵ,n, β̂ϵ,n) = sup

β∈Θβ

U (4)
ϵ,n(α̂ϵ,n, β),

where α̂
(1)
ϵ,n is obtained by using optim() for U

(1)
ϵ,n(α) with the initial Bayes type estimator

α̃
(1)
ϵ,n0,r1 , and β̂

(2)
ϵ,n is given by using optim() for U

(2)
ϵ,n(α̂

(1)
ϵ,n, β) with the initial Bayes type

estimator β̃
(2)
ϵ,n0,r2 .

For the true model, 100 independent sample paths are generated by the Euler-Maruyama
scheme, and the mean and the standard deviation (s.d.) for the estimators are computed.

Tables 1-10 and 11-20 are simulation results for ϵ = 0.01 and 0.05, respectively.

The time in each table is the computation time of estimation for one sample path.

The personal computer with Intel i7-5930K (3.5GHz base clock) was used for simulations.
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3.1 In case that ϵ = 0.01

Table 1: adaptive ML type estimator with the initial value being the true value

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) β̂1(1) β̂2(2) β̂3(3) time(sec.)
3.000 7.000 5.000 2.000 4.000 6.000 1.000 2.000 3.000

true (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005) (0.010) (0.014) 40

Table 2: adaptive ML type estimator with the initial value being the uniform random
number on Θ

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) β̂1(1) β̂2(2) β̂3(3) time(sec.)
24.149 25.555 3.078 23.788 3.118 26.158 3.588 4.549 5.628

unif (15.155) (15.678) (2.877) (17.492) (1.005) (15.668) (1.247) (1.439) (1.189) 40

Table 1 shows the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) when the initial value is

the true value. We see from Table 1 that all estimators have good behavior.

Table 2 is the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) with the initial value being

the uniform random number on Θ. All estimators have considerable biases, which means that the optimization
fails since the initial value may be far from the true value.
As we know very well, it is quite important to choose the initial value for optimization.
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Table 3: initial Bayes type estimator α̃
(1)
ϵ,n0,r1 with n0 = 104.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(hour)
3.006 6.989 5.120 2.006 3.986 6.000

r1 = 1.0 (0.064) (0.085) (0.502) (0.027) (0.119) (0.011) 8
2.994 7.003 5.072 2.003 3.997 6.000

r1 = 0.7 (0.069) (0.084) (0.323) (0.023) (0.105) (0.012) 8
3.000 6.997 5.112 2.005 3.985 5.998

r1 = 0.5 (0.052) (0.069) (0.247) (0.016) (0.090) (0.010) 8
2.981 7.011 5.793 2.042 3.997 5.996

r1 = 0.3 (0.048) (0.063) (0.347) (0.024) (0.091) (0.010) 8
3.437 6.267 10.489 2.914 4.198 5.971

r1 = 0.1 (0.160) (0.070) (0.717) (0.407) (0.151) (0.033) 8

Table 4: initial Bayes type estimator β̃
(2)
ϵ,n0,r2 with α̃

(1)
ϵ,n0,r1 and n0 = 104.

β̂1(1) β̂2(2) β̂3(3) time(hour)
0.999 2.000 3.002

r1 = 1.0, r2 = 1.0 (0.014) (0.028) (0.043) 1.5
0.999 2.000 3.002

r1 = 0.7, r2 = 1.0 (0.014) (0.028) (0.043) 1.5
0.999 1.999 3.002

r1 = 0.5, r2 = 1.0 (0.014) (0.028) (0.043) 1.5
0.999 2.000 3.002

r1 = 0.3, r2 = 0.6 (0.014) (0.028) (0.043) 1.5
0.999 2.217 3.002

r1 = 0.1, r2 = 0.2 (0.014) (1.035) (0.043) 1.5

Tables 3-4 show the simulation results of the initial Bayes type estimator θ̃B = (α̃(1)
ϵ,n0,r1

, β̃(2)
ϵ,n0,r2

) when

the sample size of the reduced data n0 = 104 and the tuning parameters (r1, r2) = (1.0, 1.0), (0.7, 1.0),
(0.5, 1.0), (0.3, 0.6) and (0.1, 0.2).
In Table 3, the initial Bayes type estimators with r1 = 1.0, 0.7, 0.5 have good behavior.
In Tables 4, most of the initial Bayes type estimators have good performance. 22



Table 5: hybrid estimator α̂ with the initial Bayes estimator α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(sec.)
2.999 7.000 5.027 2.001 3.988 6.000

r1 = 1.0, r2 = 1.0 (0.029) (0.034) (0.210) (0.014) (0.079) (0.008) 40
3.000 6.998 5.021 2.001 3.990 5.999

r1 = 0.7, r2 = 1.0 (0.045) (0.056) (0.200) (0.012) (0.086) (0.008) 40
3.002 6.994 5.051 2.002 3.988 5.999

r1 = 0.5, r2 = 1.0 (0.031) (0.041) (0.178) (0.010) (0.076) (0.008) 40
2.997 6.999 5.214 2.010 4.004 5.998

r1 = 0.3, r2 = 0.6 (0.028) (0.036) (0.359) (0.021) (0.057) (0.007) 40
2.998 7.002 4.939 1.961 3.993 5.999

r1 = 0.1, r2 = 0.2 (0.008) (0.010) (0.539) (0.591) (0.036) (0.004) 40

Table 6: hybrid estimator β̂ with α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2

β̂1(1) β̂2(2) β̂3(3) time(sec.)
1.001 2.001 3.000

r1 = 1.0, r2 = 1.0 (0.005) (0.010) (0.014) 40
1.001 2.001 3.000

r1 = 0.7, r2 = 1.0 (0.005) (0.010) (0.014) 40
1.001 2.000 3.000

r1 = 0.5, r2 = 1.0 (0.005) (0.010) (0.014) 40
1.001 2.002 3.000

r1 = 0.3, r2 = 0.6 (0.005) (0.011) (0.014) 40
1.000 2.124 3.000

r1 = 0.1, r2 = 0.2 (0.005) (0.522) (0.014) 40

Tables 5-6 show the results of the hybrid estimators θ̂n = (α̂ϵ,n, β̂ϵ,n) with the initial B. E.s in Tables 3-4.
In Tables 5-6, the hybrid estimators of α with the tuning parameters (r1, r2) = (1.0, 1.0), (0.7, 1.0),
(0.5, 1.0) have good behavior and
the hybrid estimators of β with the tuning parameters (r1, r2) = (1.0, 1.0), (0.7, 1.0), (0.5, 1.0), (0.3, 0.6)
are unbiased. 23



Next, in order to compare with the hybrid estimator (α̂n, β̂n) based on the initial Bayes type
estimator from reduced data, we consider the following two kinds of initial estimators

(α̂
(1)
G,n0

, β̂
(2)
G,n0

) and (α̂
(1)
U,n0

, β̂
(2)
U,n0

). Let n0 = 104.

Method G (Grid points method). For 186 points ᾱ0,m (m = 1, . . . , 186) with 18 equally spaced

points on each axis on [0.1, 50]6, the initial estimator α̂
(1)
G,n0

is defined as

U
(1)
ϵ,n0 (α̂

(1)
G,n0

) = max
{
U

(1)
ϵ,n0 (ᾱ0,1), U

(1)
ϵ,n0 (ᾱ0,2), . . . , U

(1)
ϵ,n0 (ᾱ0,186 )

}
.

Next, for 1303 points β̄0,m (m = 1, . . . , 1303) with 130 equally spaced points on each axis on

[0.1, 50]3, the initial estimator β̂
(2)
G,n0

is defined as

U
(2)
ϵ,n0 (α̂

(1)
G,n0

, β̂
(2)
G,n0

) = max
{
U

(2)
ϵ,n0 (α̂

(1)
G,n0

, β̄0,1), U
(2)
ϵ,n0 (α̂

(1)
G,n0

, β̄0,2), . . . , U
(2)
ϵ,n0 (α̂

(1)
G,n0

, β̄0,1303 )
}
.
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Method U (Uniform r.n. + optim() method). Using 76 uniform random numbers α0,m

(m = 1, . . . , 76) on [0.1, 50]6, we compute

α̂
(1)
m = arg sup

α
U

(1)
ϵ,n0 (α)

by means of optim() with each initial value α0,m. The initial estimator α̂
(1)
U,n0

is defined as

U
(1)
ϵ,n0 (α̂

(1)
U,n0

) = max
{
U

(1)
ϵ,n0 (α̂

(1)
1 ), U

(1)
ϵ,n0 (α̂

(1)
2 ), . . . , U

(1)
ϵ,n0 (α̂

(1)

76
)
}
.

Next, using 343 uniform random numbers β0,m (m = 1, . . . , 343) on [0.1, 50]3, we compute

β̂
(2)
m = arg sup

β
U

(2)
ϵ,n0 (α̂

(1)
U,n0

, β)

by means of optim() with each initial value β0,m. The initial estimator β̂
(2)
U,n0

is defined as

U
(2)
ϵ,n0 (α̂

(1)
U,n0

, β̂
(2)
U,n0

) = max
{
U

(2)
ϵ,n0 (α̂

(1)
U,n0

, β̂
(2)
1 ), U

(2)
ϵ,n0 (α̂

(1)
U,n0

, β̂
(2)
2 ), . . . , U

(2)
ϵ,n0 (α̂

(1)
U,n0

, β̂
(2)

343
)
}
.
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Let k = G,U . The hybrid estimator (ᾱ
(3)
k,n, β̄

(4)
k,n) is computed as follows.

ᾱ
(3)
k,n = arg sup

α∈Θα

U (3)
ϵ,n(α, β̄

(2)
k,n),

β̄
(4)
k,n = arg sup

β∈Θβ

U (4)
ϵ,n(ᾱ

(3)
k,n, β),

where ᾱ
(1)
k,n is obtained by using optim() for U

(1)
ϵ,n(α) with the initial estimator α̂

(1)
k,n0

,

and β̄
(2)
k,n is given by using optim() for U

(2)
ϵ,n(ᾱ

(1)
k,n, β) with the initial estimator β̂

(2)
k,n0

.

Let θ̂B = (α̂n, β̂n) with the initial Bayes type estimator θ̃B . Let θ̂G = (ᾱ
(3)
G,n, β̄

(4)
G,n) with

θ̃G = (α̂
(1)
G,n0

, β̂
(2)
G,n0

) and θ̂U = (ᾱ
(3)
U,n, β̄

(4)
U,n) with θ̃U = (α̂

(1)
U,n0

, β̂
(2)
U,n0

).
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Table 7: initial estimators α̃B = α̃ϵ,n0,r1 (r1 = 0.7), α̃G (186 + 1303 lattice points), α̃U

(76 + 343 random numbers) with n0 = 104.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(hour)
2.994 7.004 5.072 2.003 3.997 5.999

α̃B (0.068) (0.084) (0.326) (0.023) (0.105) (0.012) 8
0.010 11.121 16.677 2.787 4.149 5.566

α̃G (0) (0) (0) (0) (1.395) (0) 12
3.698 6.919 6.565 2.901 3.850 5.838

α̃U (3.013) (2.566) (3.316) (5.428) (0.822) (1.266) 15

Table 8: initial estimators β̃B = β̃ϵ,n0,r1,r2 (r1 = 0.7, r2 = 1.0), β̃G (186 + 1303 lattice
points), β̃U (76 + 343 random numbers) with n0 = 104.

β̂1(1) β̂2(2) β̂3(3) time(hour)
0.999 2.000 3.002

β̃B (0.014) (0.028) (0.043) 1.5
1.979 1.964 3.087

β̃G (1.464) (0.308) (0) 1.5
1.079 2.342 3.098

β̃U (0.406) (1.031) (0.441) 1.5

Tables 7-8 show the simulation results of the initial estimators θ̃B = (α̃B , β̃B), θ̃G = (α̃G, β̃G),

θ̃U = (α̃U , β̃U ).

In Tables 7-8, although θ̃G and θ̃U have considerable biases, θ̃B with (r1, r2) = (0.7, 1.0) is unbiased.

27



Table 9: hybrid estimators α̂B , α̂G and α̂U with α̃B , α̃G and α̃U , respectively.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(sec.)
3.000 6.998 5.021 2.001 3.990 5.999

α̂B (0.045) (0.056) (0.200) (0.012) (0.086) (0.008) 40
2.489 10.153 4.965 1.981 4.001 5.999

α̂G (1.853) (4.444) (0.320) (0.197) (0.031) (0.004) 40
3.689 6.933 4.878 2.760 3.951 5.832

α̂U (3.018) (2.564) (1.662) (5.263) (0.245) (1.386) 40

Table 10: hybrid estimators β̂B , β̂G and β̂U with θ̃B , θ̃G and θ̃U , respectively.

β̂1(1) β̂2(2) β̂3(3) time(sec.)
1.001 2.001 3.000

β̂B (0.005) (0.010) (0.014) 40
2.007 2.000 3.000

β̂G (1.404) (0.010) (0.014) 40
1.115 2.295 3.104

β̂U (0.504) (0.817) (0.472) 40

Tables 9 -10 show the results of the hybrid estimators θ̂B = (α̂B , β̂B), θ̂G = (α̂G, β̂G), θ̂U = (α̂U , β̂U ).

In Tables 9-10, θ̂G and θ̂U have considerable biases.
On the other hand, θ̂B with (r1, r2) = (0.7, 1.0) in Table 9 has good behavior.
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3.2. In case that ϵ = 0.05

Table 11: adaptive ML type estimator with the initial value being the true value

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) β̂1(1) β̂2(2) β̂3(3) time(sec.)
2.999 6.999 5.002 2.000 3.997 6.000 1.000 2.000 3.000

true (0.009) (0.012) (0.034) (0.006) (0.073) (0.008) (0.005) (0.010) (0.014) 40

Table 12: adaptive ML type estimator with the initial value being the uniform random
number on Θ

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) β̂1(1) β̂2(2) β̂3(3) time(sec.)
24.226 24.702 2.890 25.031 3.156 26.583 1.114 2.117 3.104

unif (15.068) (15.596) (2.618) (15.876) (1.042) (15.534) (0.049) (0.050) (0.055) 40

Tables 11 shows the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) when the initial value

is the true value.
We see from Tables 11 that all estimators have good behavior.

Tables 12 shows the simulation results of the adaptive ML type estimator (α̂
(3)
A,n, β̂

(4)
A,n) with the initial value

being the uniform random number on Θ.
All estimators have considerable biases, which means that the optimization fails since the initial value may be
far from the true value.
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Table 13: initial Bayes type estimator α̃
(1)
ϵ,n0,r1 with n0 = 104.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(hour)
3.587 6.654 5.317 2.383 3.966 5.984

r1 = 1.0 (2.638) (1.389) (1.457) (3.751) (0.483) (0.081) 8
3.388 7.183 5.386 2.443 3.962 5.986

r1 = 0.7 (2.564) (3.408) (1.403) (4.505) (0.483) (0.082) 8
4.432 7.235 5.632 2.0279 3.976 5.976

r1 = 0.5 (5.982) (4.564) (1.379) (0.091) (0.497) (0.082) 8
3.506 6.607 7.412 2.134 4.020 5.974

r1 = 0.3 (1.088) (0.536) (1.956) (0.139) (0.544) (0.142) 8
5.734 6.873 10.529 4.623 4.344 6.369

r1 = 0.1 (2.384) (0.980) (2.878) (1.311) (0.757) (0.441) 8

Table 14: initial Bayes type estimator β̃
(2)
ϵ,n0,r2 with α̃

(1)
ϵ,n0,r1 and n0 = 104.

β̂1(1) β̂2(2) β̂3(3) time(hour)
1.001 2.002 3.002

r1 = 1.0, r2 = 1.0 (0.015) (0.034) (0.043) 1.5
1.002 2.002 3.002

r1 = 0.7, r2 = 1.0 (0.024) (0.028) (0.044) 1.5
1.003 2.000 3.002

r1 = 0.5, r2 = 1.0 (0.020) (0.028) (0.043) 1.5
1.001 2.000 3.002

r1 = 0.3, r2 = 0.6 (0.019) (0.028) (0.043) 1.5
1.033 2.052 3.006

r1 = 0.1, r2 = 0.2 (0.063) (0.101) (0.052) 1.5

Tables 13-14 show the simulation results of the initial Bayes type estimator θ̃B = (α̃(1)
ϵ,n0,r1

, β̃(2)
ϵ,n0,r2

) when

the sample size of the reduced data n0 = 104 and the tuning parameters (r1, r2) = (1.0, 1.0), (0.7, 1.0),
(0.5, 1.0), (0.3, 0.6) and (0.1, 0.2).
In Table 13, all initial Bayes type estimators have considerable biases.
In Tables 14, most of the initial Bayes estimators have good performance. 30



Table 15: hybrid estimator α̂ with the initial Bayes estimator α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(sec.)
3.438 6.762 5.078 2.441 4.012 5.994

r1 = 1.0, r2 = 1.0 (2.265) (1.200) (0.819) (4.370) (0.214) (0.026) 40
3.350 7.325 5.144 2.431 4.039 5.995

r1 = 0.7, r2 = 1.0 (2.614) (4.157) (0.790) (4.506) (0.194) (0.024) 40
4.262 7.346 5.084 2.002 4.039 5.995

r1 = 0.5, r2 = 1.0 (5.677) (4.657) (0.418) (0.024) (0.212) (0.025) 40
3.085 6.972 5.145 2.004 4.027 5.995

r1 = 0.3, r2 = 0.6 (0.790) (0.205) (0.617) (0.026) (0.170) (0.024) 40
4.862 7.034 4.880 3.418 3.925 5.954

r1 = 0.1, r2 = 0.2 (3.425) (1.888) (2.015) (2.038) (0.559) (0.653) 40

Table 16: hybrid estimator β̂ with α̃
(1)
ϵ,n0,r1 and β̃

(2)
ϵ,n0,r2

β̂1(1) β̂2(2) β̂3(3) time(sec.)
1.004 2.002 3.000

r1 = 1.0, r2 = 1.0 (0.019) (0.019) (0.014) 40
1.002 2.001 3.000

r1 = 0.7, r2 = 1.0 (0.015) (0.015) (0.014) 40
1.007 2.000 3.000

r1 = 0.5, r2 = 1.0 (0.030) (0.010) (0.014) 40
1.001 2.000 3.000

r1 = 0.3, r2 = 0.6 (0.007) (0.010) (0.014) 40
1.025 2.039 3.003

r1 = 0.1, r2 = 0.2 (0.046) (0.060) (0.021) 40

Tables 15-16 show the results of the hybrid estimators θ̂n = (α̂ϵ,n, β̂ϵ,n) with the initial Bayes type
estimators in Tables 13-14, respectively.
In Tables 15-16, the hybrid estimator of (α, β) with (r1, r2) = (0.3, 0.6) is best among the competing hybrid
estimators.
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Table 17: initial estimators α̃B = α̃ϵ,n0,r1,r2 (r1 = 0.3, r2 = 0.6), α̃G (186 + 1303 lattice
points), α̃U (76 + 343 random numbers) with n0 = 104.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(hour)
3.506 6.607 7.412 2.134 4.020 5.974

α̃B (1.088) (0.536) (1.956) (0.139) (0.544) (0.142) 8
4.566 7.538 13.566 2.316 4.510 5.566

α̃G (6.878) (4.872) (5.615) (1.120) (1.617) (0.000) 12
4.130 6.387 6.596 2.671 3.864 6.001

α̃U (3.712) (1.909) (4.069) (4.410) (0.871) (1.258) 15

Table 18: initial estimators β̃B = β̃ϵ,n0,r1,r2 (r1 = 0.3, r2 = 0.6), β̃G (186 + 1303 lattice
points), β̃U (76 + 343 random numbers) with n0 = 104.

β̂1(1) β̂2(2) β̂3(3) time(hour)
1.001 2.000 3.002

β̃B (0.019) (0.028) (0.043) 1.5
1.160 1.945 3.087

β̃G (0.038) (0.066) (0.000) 1.5
1.004 2.010 3.006

β̃U (0.023) (0.041) (0.049) 1.5

Tables 17-18 show the simulation results of the initial estimators θ̃B = (α̃B , β̃B), θ̃G = (α̃G, β̃G),

θ̃U = (α̃U , β̃U ).

In Tables 17-18, β̃B , β̃G and β̃U are unbiased, but α̃B with (r1, r2) = (0.3, 0.6), α̃G and α̃U have
considerable biases.
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Table 19: hybrid estimators α̂B , α̂G and α̂U with α̃B , α̃G and α̃U , respectively.

α̂1(3) α̂2(7) α̂3(5) α̂4(2) α̂5(4) α̂6(6) time(sec.)
3.085 6.972 5.145 2.004 4.027 5.995

α̂B (0.790) (0.205) (0.617) (0.026) (0.170) (0.024) 40
5.607 7.205 4.259 1.651 4.017 6.046

α̂G (5.801) (4.904) (1.768) (0.817) (0.163) (0.509) 40
3.997 6.561 4.992 2.765 4.037 6.035

α̂U (3.607) (1.488) (1.064) (4.424) (0.263) (1.142) 40

Table 20: hybrid estimators β̂B , β̂G and β̂U with θ̃B , θ̃G and θ̃U , respectively.

β̂1(1) β̂2(2) β̂3(3) time(sec.)
1.001 2.000 3.000

β̂B (0.007) (0.010) (0.014) 40
1.051 2.012 3.002

β̂G (0.044) (0.027) (0.024) 40
1.006 2.011 3.003

β̂U (0.022) (0.036) (0.021) 40

Tables 19-20 show the results of the hybrid estimators θ̂B = (α̂B , β̂B), θ̂G = (α̂G, β̂G), θ̂U = (α̂U , β̂U ).
In Tables 19, α̂G and α̂U have considerable biases. On the other hand, α̂B with (r1, r2) = (0.3, 0.6) in
Table 19 has good behavior.
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Concluding remarks:

In order to calculate the ML type estimator by optim() in R language, it is quite crucial
to select a suitable initial value.

It is useful to obtain the Bayes type estimator as an initial estimator since the Bayes type
estimator does not strongly depend on the initial value.

We need to develop the theory of computational statistics, which expands high speed
and rigorous high frequency data analysis.
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