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Model of observations
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Model of observations

« | ™

Recall: X = (X(¢), ¢ > 0) is an (inhomogeneous) Poisson process
with intensity function A (¢), ¢ > 0, if Xy = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P{X(t)— X(s) =k} = (A (0) dt) exp{—/:)\(t)dt}.
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Model of observations

X

Recall: X = (X(¢), ¢ > 0) is an (inhomogeneous) Poisson process
with intensity function A (¢), ¢ > 0, if Xy = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P{X(t)— X(s) =k} = (A (0) dt) exp{—/:)\(t)dt}.

(XM, XY of
a Poisson process with intensity function )\g”’) (t),0 <t <.

Observations: n independent realizations X (n)
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Model of observations

X

Recall: X = (X(¢), ¢ > 0) is an (inhomogeneous) Poisson process
with intensity function A (¢), ¢ > 0, if Xy = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P{X(t)— X(s) =k} = (A (0) dt) exp{—/:)\(t)dt}.

(XM, XY of
a Poisson process with intensity function )\g”’) (t),0 <t <.

| Observations: n independent realizations X (n)

Unknown parameter: ¢ € © = (o, 5),0 < a < <
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Model of observations

|

Recall: X = (X(¢), ¢ > 0) is an (inhomogeneous) Poisson process
with intensity function A (¢), ¢ > 0, if Xy = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P{X(t)— X(s) =k} = (A (0) dt) exp{—/:)\(t)dt}.

(XM, XY of

a Poisson process with intensity function )\g”’) (t),0 <t <.

| Observations: n independent realizations X (n)

Unknown parameter: ¢ € © = (o, 5),0 < a < <

Asymptotics: n — oo.
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Model of observations

N

Recall: X = (X (), t > O) is an (inhomogeneous) Poisson process
with intensity function A (¢), ¢ > 0, if Xy = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P{X(t)— X(s) =k} = (A (0) dt) exp{—/:)\(t)dt}.

| Observations: n independent realizations X (™) = (X 1(”’), . ,X,,Sm) of
a Poisson process with intensity function )\fc}n) (t),0 <t <.

Unknown parameter: ¢ € © = (o, 5),0 < a < <
Asymptotics: n — oo.

Remark: equivalent to periodic observation on |0, n7] and to one
O

observation on |0, 7] with intensity function n)\( )(t < T

9
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Conditions

(C1) The intensity function )\1(9”) () can be written

as Af;”) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.
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Conditions

o

(C1) The intensity function )\g"’) () can be written

as )\1(9"’) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all t € [0, 7], there exist hIil Y (t) = 1(t) > 0 uniformly
n—-+oo

with respect to ¢.
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Conditions

n |

(C1) The intensity function )\g"’) () can be written

as )\1(9”’) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all t € [0, 7], there exist hIil Y (t) = 1(t) > 0 uniformly
n—-+oo

with respect to ¢.

(C3) We have r,, — r € R. If r = 0, we also suppose nr? — +oo0.
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Conditions

X

(C1) The intensity function )\1(9”’) () can be written

as )\1(9”’) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all t € [0, 7], there exist liIil Y (t) = 1(t) > 0 uniformly
n—-+oo

with respect to ¢.
(C3) We have r,, — r € R. If r = 0, we also suppose nr? — +oo0.

(C4) There exist some constants ¢, I, > 0 such that ¢ < )\gn) (t) < L for
allm € N, ¥ € (o, 5) and t € [0, 7].
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Conditions

N

(C1) The intensity function )\1(9”’) (t) can be written

as )\g”) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all ¢t € |0, 7], there exist nl_l)Iiloo Y (t) = 1(t) > 0 uniformly
with respect to ¢.

7 (C3) We have r,, — r € R. If r = 0, we also suppose nr? — +oo0.
(C4) There exist some constants ¢, L, > 0 such that ¢ < )\gn) (t) < L for
allm € N, ¥ € (o, 5) and t € [0, 7].

Remark:
(C1)-(C3) and r > — min w( ) = (C4) for n sufficiently large.

te[0,7]
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Conditions

..

(C1) The intensity function )\g"’) () can be written

as )\1(9”’) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all t € [0, 7], there exist liIil Y (t) = 1(t) > 0 uniformly
n—-+oo

with respect to ¢.
(C3) We have r,, — r € R. If r = 0, we also suppose nr? — +oo0.

| (C4’) We have r > — min (t).

tel0,7]
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Conditions

N

(C1) The intensity function )\1(9”’) (t) can be written

as )\g”) (t) = ¥n(t) + rnlyssy, where 1, is continuous on |0, 7.

(C2) For all ¢t € |0, 7], there exist liIil Un(t) = ¢¥(t) > 0 uniformly
n—-+oo

with respect to ¢.

(C3) We have r,, — r € R. If r = 0, we also suppose nr? — +oo0.

| (C4') We have r > — min 0(t).

tel0,7]

Remark:
(C1)-(C2) <= (CO0) The intensity function )\fc}n) (t) can be written
as )\fc}n) (t) = ¥(t) + rn1y>ey, where ¢ > 0 is continuous on |0, 7).
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Likelihood ratio

The measures corresponding to different values of 1} are equivalent
(and also equivalent to the case A = 1).
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Likelihood ratio
~

The measures corresponding to different values of 1} are equivalent
(and also equivalent to the case A = 1).

The likelihood is a (random) cadlag function of ¥ € (a, 3):

L (9, X™) eXp{Z/ln)\(n M(t) —n T[Agm(t)th}.

0
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Likelihood ratio

=

The measures corresponding to different values of 1} are equivalent
(and also equivalent to the case A = 1).

The likelihood is a (random) cadlag function of ¥ € (a, 3):

Lo (0, X eXp{Z/ln)\(n M(t) — n/T[Agm(t)th}.

0

| The normalized likelihood ratio is a process with trajectories in Zy(R):

(n)
Ln (0, X™) vE O, = (v, (a—1V),¢, (B-1)),

Zno0) =7 X))

where 9, 2 0 + Vipn, and normalization rate @, = @, (1) \, 0 suitably.
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Likelihood ratio

=

The measures corresponding to different values of 1} are equivalent
(and also equivalent to the case A = 1).

The likelihood is a (random) cadlag function of ¥ € (a, 3):

Lo (0, X eXp{Z/ln)\(n M(t) — n/T[Agm(t)th}.

0

| The normalized likelihood ratio is a process with trajectories in Zy(R):
Ly (9, X™)

Zn — 7 €0, = Ha—0 ) H(B—=0 3
A . . - it r # 07

where ¥, = ¥ + vy,,, and normalization rate p,, = Ir l ()
—, 1fr=20.
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The processes Z, and Z
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= The processes Z, and ZO

The process Z, is a process with trajectories in Z,(R) defined by

exp{pl—[+ (v) —v} if v
exp{ —pll_ ( —)—v} if v

where p > 0, and 11 and 11_ are two independent Poisson processes
| on Ry of intensities 1/(e” — 1) and 1/(1 —e™*).
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The processes Z, and Z

|

The process Z, is a process with trajectories in Z,(R) defined by

exp{pl—[+ (v) —v} if v
exp{ —pll_ ( —)—v} if v

Y

N
=
||
Y

0
0,

where p > 0, and 11, and II_ are two independent Poisson processes
| on R, of intensities 1/(e” — 1) and 1/(1 — e™7").

The process 7 is a process with trajectories in 6y(R) C Z,(R) defined
by

26 - {2}

where W 1s a standard two-sided Brownian motion (Wiener process).
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Limit of the normalized likelihood ratio
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) — (C4) be fulfilled. Then,
uniformly in ¥ on any compact set K C O, the process Z,, y converges
weakly in the space Z,(R) to
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) — (C4) be fulfilled. Then,
uniformly in ¥ on any compact set K C O, the process Z,, y converges
weakly in the space Z,(R) to

P(9)

¢ the process Z, with p = In 20 in the case r < 0,
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b Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) — (C4) be fulfilled. Then,
uniformly in ¥ on any compact set K C O, the process Z,, y converges
weakly in the space Z,(R) to

¢ the process Z, with p = In % , 1n the case r < 0,
¢ the process Z, with p = In % defined by

Z!(v) = Z,((—v)—), in the case > 0,
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b Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) — (C4) be fulfilled. Then,
uniformly in ¥ on any compact set K C O, the process Z,, y converges
weakly in the space Z,(R) to

¢ the process Z, with p = In % , 1n the case r < 0,
¢ the process Z, with p = In % defined by

Z!(v) = Z,((—v)—), in the case > 0,

¢ the process 7, in the case r = 0.
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= Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) — (C4) be fulfilled. Then,
uniformly in ¥ on any compact set K C O, the process Z,, y converges

weakly in the space Z,(R) to

¢ the process Z, with p = In % , 1n the case r < 0,
¢ the process Z, with p = In % defined by

Z!(v) = Z,((—v)—), in the case > 0,

¢ the process 7, in the case r = 0.

Remark: in the case r # 0, the limit is the same as in the case of a
fixed jump size (r,, = r) studied by Kutoyants (1984, 1998) (see also
Dachian, Kutoyants, Yang (2015) for hypotheses testing).
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Parameter estimation
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Parameter estimation
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Parameter estimation

The maximum likelihood estimator (MLE) @1 1s defined by

max{ Ly ( Do+, X)), Ly (Gu—, X"} = sup L, (9, X)),
9<(0.5)

The Bayes estimator (BE) 1% (for square loss and) for a given prior
density p 1s defined by

5 129 p(9 L(ﬁ X M) dy
7 p00) Lo (6. X0) a9
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Asymptotic efficiency
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Asymptotic efficiency

We introduce the random variables £ and ¢ by the equations

7 ey e 4 fj;ovZo(v) dv
O(g)_ilelg ofv) and €= fj;oZo(v)dv |
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Asymptotic efficiency

L] ‘
We introduce the random variables £ and ¢ by the equations
| 0 Zo(v) dv
Z = sup Zp(v) and (= —r .
O(f) vEI]I?) O( ) C fj_;o Z()(U) dv

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
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Asymptotic efficiency

..

We introduce the random variables £ and ¢ by the equations
I 0 Zo(v) dv

©@,

Zo(f):ilelgzo(v) and (¢ = f+OOZo (v) dv :

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.

Then, for any ¥y € ©, we have

lim lim inf sup Ty E(n) In, * > E¢,
0—=0 nSfoo Un |[P—o|< 5¢2(0) (6 = 0)

where the inf is taken over all possible estimators 1J,,.
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Asymptotic efficiency

X

We introduce the random variables £ and ¢ by the equations

7 ey e 4 fj;ovZo(v) dv
0({)—3161%2 ofv) and €= fj;oZo(v)dv |

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, for any ¥y € ©, we have

E( (0, —9)2 > EC2 = 16¢(3) ~ 19.23,

2.4
n-r,
2

| lim lim inf  sup ZHa

020 nstoo Fn |[9—1o|<d

where the inf is taken over all possible estimators 1J,,.
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Asymptotic efficiency

N

We introduce the random variables £ and ¢ by the equations
I 0 Zo(v) dv

©@,

Zo(f):ilelgzo(v) and (¢ = f+OOZO (v) dv :

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.

Then, for any ¥y € ©, we have

| lim lim inf sup W(g) E(n)(ﬁ 9)? > E¢® = 16¢(3) ~ 19.23,
0=0 pstoo Uy |9 —390|<0

where the inf is taken over all possible estimators 1J,,.

Definition. — We say that an estimator ¢, is asymptotically efficient if

lim lim  sup oy E 0* —19)? = EC* =16 ¢(3),
0—0 n—-+oo [9—00| <5 ¢2(19) ( ) ( )

for all v, € ©.
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Properties of the MLE
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Properties of the MLE

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
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Properties of the MLE

o

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,
uniformly on ¢ in any compact set K C O, the relations
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Properties of the MLE

n |

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,
uniformly on ¢ in any compact set K C O, the relations

¢ @n LN (convergence 1n probability),
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Properties of the MLE

W |

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,
uniformly on ¢ in any compact set K C O, the relations

¢ @n LN (convergence 1n probability),

(9, —0¥) =& (convergence in law),
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Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,
uniformly on ¢ in any compact set K C O, the relations

¢ @n LN (convergence 1n probability),

(9, —0¥) =& (convergence in law),

OmEgn)‘@n—ﬁ‘p — E [£)F for any p > 0.
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= Properties of the MLE

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,

uniformly on ¢ in any compact set K C O, the relations

¢ 5,,1 LN (convergence 1n probability),

(9, —0¥) =& (convergence in law),

OME?)Wn—ﬁ‘p — E [£)F for any p > 0.
In particular, the relative asymptotic efficiency of @1 1S

E(?
T
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= Properties of the MLE

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — +00, the maximum likelihood estimator 5,,1 satisfies,

uniformly on ¢ in any compact set K C O, the relations

¢ 5,,1 LN (convergence 1n probability),

(9, —0¥) =& (convergence in law),

OME?)Wn—ﬁ‘p — E [£)F for any p > 0.
In particular, the relative asymptotic efficiency of @1 1S

EC2  16¢(3) _
B 25 ° 0.74.
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Properties of the BEs
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Properties of the BEs

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
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Properties of the BEs

n |

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — 400, the Bayes estimator v},, for any continuous strictly
positive prior density satisfies, uniformly on ?J in any compact set

K C ©, the relations

Asymptotical Statistics of Stochastic Processes (S.A.P.S.) XI — p.10/26



Properties of the BEs

W |

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — 400, the Bayes estimator v},, for any continuous strictly
positive prior density satisfies, uniformly on ?J in any compact set

K C ©, the relations

o, LN (convergence 1n probability),
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Properties of the BEs

..

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — 400, the Bayes estimator 1A9/n for any continuous strictly
positive prior density satisfies, uniformly on ?J in any compact set

K C O, the relations

o, LN (convergence 1n probability),

v, —19) = ( (convergence in law),
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Properties of the BEs

X

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — 400, the Bayes estimator v},, for any continuous strictly

positive prior density satisfies, uniformly on ¥/ in any compact set

K C ©, the relations

o, LN (convergence 1n probability),

2 Z(—";;%) (571 — ) = ( (convergence in law),

o Wl E(n)@n—ﬁ‘p — E (" for any p > 0.
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Properties of the BEs

|

Theorem. — Let the conditions (C1) — (C4) be fulfilled with » = 0.
Then, as n — 400, the Bayes estimator v},, for any continuous strictly

positive prior density satisfies, uniformly on ¥/ in any compact set

K C ©, the relations

o, LN (convergence 1n probability),

2 Z(—";;%) (571 — ) = ( (convergence in law),

o it Eén)|5n—z9‘p — E|¢|"  forany p > 0.

In particular, 5,,, 1s asymptotically efficient.
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Hypothesis testing

Problem: now © = [y, b) and we have to choose between

Ho U = Uy,
J0 v > .
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Hypothesis testing

Problem: now © = [y, b) and we have to choose between

Ho U = Uy,
J0 v > .

Tests: a (randomized) test b, = 1, (X (™) is defined as the probability
| to reject the hypothesis .77;.
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Hypothesis testing

-

Problem: now © = [y, b) and we have to choose between

Ho U = Uy,
J0 v > .

Tests: a (randomized) test ¢, = 1, (X ") is defined as the probability
| to reject the hypothesis .77;.

Size: we denote . the class of tests 2),, of asymptotic size € € [0, 1]:

Ko ={dn : lim B, (X)) =21

n—oo
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Hypothesis testing

-

Problem: now © = [y, b) and we have to choose between

Ho U = Uy,
J0 v > .

Tests: a (randomized) test ¢, = 1, (X ") is defined as the probability
| to reject the hypothesis .77;.

Size: we denote . the class of tests 2),, of asymptotic size € € [0, 1]:

Ko ={dn : lim B, (X)) =21

n—oo

Power: power function of v, is 5(¢,, 1) = Eg") U, (X (”)), ¥ > .
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Pitman’s approach
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Pitman’s approach

Close or contiguous alternatives: v = v, 2 Yo + uw,, where
en = n (P9) \yOand u € O} = [0, 0, (b — y)).
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Pitman’s approach

o

Close or contiguous alternatives: v = v, 2 Yo + uw,,, where
on = n (U0) \Oand u € OF = |0, (b—1p)).

Rate: ¢, such that the normalized likelihood ratio
L (90 + vy, X™)

_|_
Ln(ﬁo,X(”)) 7 v & O,

Z’nﬂ?o (U) —

| has a non degenerate limit in Dy(Ry)
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Pitman’s approach

|

| has a non degenerate limit in Do(Ry): o, =

Close or contiguous alternatives: v = v, 2 Yo + uw,,, where
on = n (U0) \Oand u € OF = |0, (b—1p)).

Rate: ¢, such that the normalized likelihood ratio
L, (190 + v, X(“))

L, (9, XM)
__ ¥(o)

2
nry

v e O

Znﬂ?o (U) —

1N our case.
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Pitman’s approach

..

Close or contiguous alternatives: v = v, 2 Yo + uw,,, where
on = n (U0) \Oand u € OF = |0, (b—1p)).

Rate: ¢, such that the normalized likelihood ratio
L (90 + vy, X™)

Lin9o (V) = , v e O,
,190( ) Ln(ﬁo,X(n)) n
| has a non degenerate limit in Zy(R): ¢, = ?n(fg) in our case.
Problem: we have to choose between
Y u =0,
J0 u > 0.
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Pitman’s approach

X

Close or contiguous alternatives: v = v, 2 Yo + uw,,, where
on = n (U0) \Oand u € OF = |0, (b—1p)).

Rate: ¢, such that the normalized likelihood ratio
L (90 + vy, X™)

Zn v) = ] (U @+,
,190( ) Ln (?907 X(n)) n
| has a non degenerate limit in Do(Ry): o, = ﬁf“jy in our case.
Problem: we have to choose between
N u =0,
J0 u > 0.

Power: power function of v, is B(1),,, u) = Egi) U, (X (’”’)), u > 0.
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Limits of the likelihood ratio
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= Limits of the likelihood ratio

Limit under hypothesis: under v = v, the limit of the normalized
likelihood ratio Z,, 4, 18

U

Zo(v) = eXp{W(U) ~ 5}, v >0,

where W 1s a standard Brownian motion (Wiener process).
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Limits of the likelihood ratio

|

Limit under hypothesis: under v = v, the limit of the normalized
likelihood ratio Z,, 4, 18

U

Zo(v) = exp{W(v) ~ 5}, v >0,

where W 1s a standard Brownian motion (Wiener process).

| Limit under alternative: under © = ¥, (with any fixed u > 0), the
limit of the normalized likelihood ratio Z,, y, 1S

v —ul  w

Z$" (v) = exp{W(v) — + 5}, v >0,

where W 1s a standard Brownian motion (Wiener process).
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Wald’s test
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Wald’s test

The maximum likelihood estimator (MLE) @1 1S nOw given by

max{ Ly (O-+, X), Ly (T, X®) } = sup Ly (9, X™).
Y€ [Y0,b)
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Wald’s test

« | ™

The maximum likelihood estimator (MLE) @1 1S nOw given by

max{ Ly (U, X)), Ly (J0—, X b = sup Ly (9, X™).
196[190,1))

The Wald’s test (WT) 1s based on the MLE @1 and 1s defined by

0 (n)\ __
on(X") =1 Ty (Fn—t0)>m: }

with m,. solution of

/mtw(&exp{ 1/} — Lo~ \f/z))

where ® is the distribution function of (0, 1).
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Properties of the WT
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Properties of the WT

¢ The test ¢, belongs to ..
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Properties of the WT

¢ The test ¢, belongs to ..

¢ The power function of ¢ converges to 3°(u):

B, u) — 57 (u),

where

B°(u) =P {& > m. —u}, Zo(&y) = sup Zy(v)

v=>—U

and/or

B°(u) = P{fiu) > me |, Zéu) (fiu)) = sup Z(gu)(v).

v>=0
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General likelihood ratio test
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General likelihood ratio test

The general likelihood ratio test (GLRT) 1s defined by

q?n (X(n)) — ]I{Q(X(”))>1/s}

with

L, (9, X™)
X(n) _ n\Y
Q) ﬁ:[ggb) Ly, (99, X))

maX{Ln (1/9\714_7 X(n)) L, (7/9\,”_7 X(n)) }
B Ly (90, X))
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Properties of the GLRT
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Properties of the GLRT

¢ The test q% belongs to /..
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Properties of the GLRT

¢ The test q@n belongs to /..

 The power function of ¢, converges to 3 (u):

B, u) — Blu),

where

—1

Bu)=P{Z,>1/e},  Z,= (Zo(—u))" sup Zo(v)

v=>—1U

and/or

Bu)=P{Z" > 1/},  Z™ =sup 2" (v).

v=0
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First Bayes test
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First Bayes test

The Bayes estimator (BE) 1% (for square loss and) for a given prior
density p 1s now given by

5 S 9P Ly (9, X™) AV
C L p() L (9, X W) A
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First Bayes test

The Bayes estimator (BE) 7% (for square loss and) for a given prior

density p 1s now given by
~ S 9P Ly (9, X™) AV
C L p() L (9, X W) A

The first Bayes test (BT1) 1s a Wald-type test based on the BE 5,,, and

| 1s defined by
¢ ( ) {J(—Z;%)(ﬁn_'ﬁO)>k€}
with k. solution of

f0+oo v Zo(v) dv

f0+oo Zo(v)dv

P{( >k} =¢ G+ =
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Properties of the BT1
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Properties of the BT1

¢ The test $n belongs to /..
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Properties of the BT1

¢ The test 55n belongs to /..

 The power function of ¢,, converges to 3(u):

B(¢n, u) — B(w),

where
~ [0 Zy(v) dv
u) =P{{, > k. —u}, =
B(u) {¢ } ¢ T Zo(w) v
and/or
400 (u)
~ " " v Zy " (v)dv
Bu) =P{¢\ >k}, (=00

IR Zéu)(v) dv
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Second Bayes test
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Second Bayes test

For a test ¢,,, the mean (or averaged) power is

B(dn) = 0 B(n, 9) p()dV.
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Second Bayes test

o

For a test ¢,,, the mean (or averaged) power is
b
B(dn) = | Bl(¢n, V) p(d)dv.
Yo

The second Bayes test (BT2) 1s the test which maximizes the mean
power and is defined by

o (X(n)) - ]l{R(X(”))>ge}
| with
nr? fgo L, (9, X™) p(d) dv

p(90) ¥ (o) Ly, (P, X )

R(X™) =
and ¢. solution of

~ ~ 00
P{Z_|_ > gg} — &, Z_|_ = / Zo(U) dU.
0
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Properties of the BT2
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Properties of the BT2

¢ The test 5; belongs to ..
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Properties of the BT2

¢ The test 5; belongs to ..

 The power function of ¢* converges to 5*(u):

—~

B}, 1) — B*(w),
where
g*(u) — P{Zu > gs}a Zu — (ZO(_UJ))l/ Z()(U) dov
and/or

P 7

—~ + 00
Bru) =P{Z\" > g}, 7 = / 209 () do.
0
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Numerical simulations
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Numerical simulations
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Numerical simulations

4 )\1(9”) (t) = 1.5 4+n02 ]l{t>19}, 0 <
®Jy=2and © = [2,4).

N~
/\
S
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Numerical simulations

4 )\1(9”) (t) = 1.5 4+n02 ]l{t>19}, 0 <
®Jy=2and © = [2,4).

Y(0) 15
< — = —
Fn nr2 VN

N~
/\
S
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Numerical simulations

e M) =154+ 0 0P 1y, 0<t
®Jy=2and © = [2,4).

Y(0) 15
< — = —
Fn nr2 VN

# prior distribution for BT1: uniform on |2, 4).

/\
S
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L Numerical simulations

e M) =154+ 0 0B 1y, 0<tE <4
®Jy=2and © = [2,4).

) 15
nr:  \/n’

# prior distribution for BT1: uniform on |2, 4).

¢ some thresholds for WT and BT1:

®p, =

n

e | 0.001 | 0.005 | 0.01 0.05 | 0.1 0.2
m. | 30.336 | 20.686 | 14.886 | 7.282 | 4.531 | 2.236
k. | 24.877 | 17.588 | 16.782 | 8.582 | 5.573 | 3.024
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Likelihood ratio
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Likelihood ratio

2 _
n=50
1.5¢
3C 1
N
0.5
O L N
-5 5
10 ¢
— n=300
8 L
= 9
N 4t
2 L
0 N
-1 10
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Likelihood ratio

27 2.
— n=50 — n=100
1.5 1.5
3C 1 3!: 1
N N
0.5 0.5
0] : 0]
-5 0] 5 -10
\Y4 \V4
10 27
i — =300 — =500
81 1.5}
— 6 I —
= = 1
N 4t N
5| 0.5
0 . . O . A PRI, e YO M,
-10 0 10 20 =10 0] 10 20
\V/ \V/

Some realization of Z,, »,
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Convergence of power functions
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Convergence of power functions
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Convergence of power functions

Convergence of power functions of the GLRT, of the WT and of the BT1
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Comparison of limit power functions
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Comparison of limit power functions
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Comparison of limit power functions

« | ™

€=0.01 u

Comparison of limit power functions with the Neyman-Pearson envelope
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