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Model

Model

Consider a regression model in continuous time

dyt = S(t)dt + dξt , 0 ≤ t ≤ n ,

where S is an unknown 1 - periodic function; ξ = (ξt)t≥0 is an
unobservable noise such that for each square integrable function function f
the stochastic integral

In(f ) =
∫ n

0
f (s)dξs

is well defined and has the properties:

EQ In(f ) = 0 and EQ I
2
n (f ) ≤ κQ

∫ n

0
f 2(s)ds .
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Model

Model

If (ξt)t≥0 is the Wiener process, then we obtain the well - known ”signal
+ white noise model” introduced by Ibragimov and Khasminskii (1979)
and Pinsker (1981).

If (ξt)t≥0 is the Gaussian process, then we obtain ”signal + color noise
model”, introduced by Kutoyants (1977) for the parametric estimation.
Later, Konev and Pergamenshchikov (2003), Höpfner and Kutoyants
(2009) use these models with the Ornstein-Uhlenbeck noises for the
parametric estimation and, Konev and Pergamenshchikov (2010) for the
non parametric estimation.

If (ξt)t≥0 is the Non-Gaussian Ornstein-Uhlenbeck process (Barndorf -
Nielsen and Shephard (2001) ) then we obtain ”signal + color noise model
with jumps”, introduced by Pchelintsev (2013) for the parametric
estimation and Konev and Pergamenshchikov (2012) for the non
parametric estimation.
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Model

Problem

The first problem: estimation of S on the basis of the continuous
observations

(yt)0≤t≤n

The second problem: estimation of S on the basis of the discret
observations

(ytj )0≤j≤pn

where tj = j/p and p is observation frequency. The main condition

p ≥ n5/6 .
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Risk

Quadratic risk

The quality of an estimate S̃n with the quadratic risk

RQ(S̃n,S) = EQ ‖S̃n − S‖2 , ‖f ‖2 =
∫ 1

0
f 2(t)dt .

Since the noise distribution Q is unknown, it seems reasonable to
introduce the robust risk of the form

R∗n(S̃n, S) = sup
Q∈Qn

RQ(S̃n,S) ,

which enables one to take into account the information that Q ∈ Qn and
ensures the quality of an estimate S̃n for all distributions in the family Qn.
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Noise process

Lévy process

We consider the noise (ξt)t≥0 defined as

ξt = $1Lt + $2 zt .

Here (Lt)t≥0 is a zero mean Lévy process, i.e.

Lt = $̌wt +
√

1− $̌2 Ľt , Ľt = x ∗ (µ− µ̃)t ,

where, 0 ≤ $̌ ≤ 1 is an unknown constant, (wt)t≥ 0 is a standard
Brownian motion, µ(ds, dx) is the jump measure with the deterministic
compensator µ̃(ds dx) = dsΠ(dx), where Π(·) is some positive measure
on R which is called the Léve measure.
The parameters $1 and $2 are unknown constants.
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Noise process

Lévy measure

The jumps measure is defined on the Borel σ - field in R+ ×R0, where
R0 = R \ {0}. For any t > 0 and any Borel set A ⊆ R0

µ([0, t]× A) = ∑
0≤s≤t

1{∆Ľs∈A}
.

The Léve measure is defined on the σ - field in R0 and for any Borel set
A ⊆ R0

Π(A) = Eµ([0, 1]× A) = E ∑
0≤s≤1

1{∆Ľs∈A}
.
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Noise process

Semi-Markov processes

Here, zt is the semi-Markov process (see, for example, Barbu and
Liminiuos (2008)), defined as

zt =
Nt

∑
j=1

Yj

where (Nt)t≥0 is a renewal counting function

Nt = ∑
k≥1

1{Tk≤t} ,

the renewal seuqence Tk = ∑k
j=1 τj and (τj )j≥1 is the i.i.d. sequence of

positive random variables with Eτ1 < ∞.
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Noise process

Semi-Markov processes

Moreover, (Yj )j≥1 is an i.i.d. sequence of random variables with

EY1 = 0 , EY 2
1 = 1 and EY 4

1 < ∞ .

Note that if τj is exponential random variables with the parameter λ > 0,
then Nt is a standard homogeneous Poisson process with the intensity
λ > 0, (zt)t≥0 is a compound Poisson process and ξt is the Levy process
in this case.
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Noise process

Noise distributions

As to the parameters $1 and $2 we assume that

σQ = $2
1 + $2

2/E τ1 ≤ σ∗ ,

where the unknown bound σ∗ is a function of n, i.e. σ∗ = σ∗(n), such
that for any δ > 0

lim
n→∞

nδ σ∗(n) = +∞ and lim
n→∞

σ∗(n)

nδ
= 0 .

We denote by Qn the family of all distributions of the process (ξt)0≤t≤n
in D[0, n] satisfying these properties.
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Noise process

Construction of procedure

The model selection method introduced by Konev and Pergamenshchikov
(2009) for the semimartingal regression models. The function S ∈ L2[0, 1]
can be represented as

S(t) = ∑
j≥1

θj φj (t) ,

where

θj = (S , φj ) =
∫ 1

0
S(t)φ(t)dt .

The first step in constructing the model selection procedure consists in
estimating the coefficients θj for S

θ̂j =
1

n

∫ n

0
φj (t)d yt .
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Noise process

Family of estimators

Now we introduce a weight least squares estimate for S(t) as

Ŝγ(t) =
n

∑
j=1

γ(j)θ̂jφj (t) ,

where γ = (γ(j))1≤j≤n is the vector of weight coefficients 0 ≤ γ(j) ≤ 1.
The model selection procedure will be chosen from a finite family of such
estimates

(Ŝγ)γ∈Γ .
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Noise process

Cost function

The empirical squared error of the estimator can be represented as

Err(γ) = ‖Ŝγ − S‖2 =
n

∑
j=1

γ2(j)θ̂2
j − 2

n

∑
j=1

γ(j)θ̂j θj + ‖S‖2 .

Since the Fourier coefficients (θj )j≥1 are unknown, the weight coefficients
(γ(j))1≤j≤n cannot be determined by minimizing this quantity. To

circumvent this difficulty we replace the terms θ̂j θj by

θ̃j = θ̂2
j −

σQ
n

,

where σQ is the noise variance.
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Noise process

Cost function

For replacing the terms θ̂j θj by its estimates on the right-hand side of the
empirical squared error, one has to pay some penalty. Thus, one comes to
the cost function of the form

J(γ) =
n

∑
j=1

γ2(j)θ̂2
j − 2

n

∑
j=1

γ(j) θ̃j + ρP(γ)

where ρ is some positive constant and P̂(γ) is the penalty term defined as

PQ(γ) =
σQ |γ|2

n
.
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Noise process

Model selection procedure

Minimizing the cost function

γ̂ = argminγ∈Γ J(γ) ,

yields the model selection procedure

Ŝ∗ = Ŝγ̂ .
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Oracle inequalities

Oracle inequalities

Theorem

For any n ≥ 2 and 0 < ρ < 1/3

RQ(Ŝ∗,S) ≤
1 + 3ρ

1− 3ρ
min
γ∈Γ
RQ(Ŝγ, S) +

BQ(n)

n ρ

and

R∗n(Ŝ∗, S) ≤
1 + 3ρ

1− 3ρ
min
γ∈Γ
R∗n(Ŝγ,S) +

B∗n
n ρ

.
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Oracle inequalities

Specification of weights

Consider a numerical grid of the form

A = {1, . . . , k∗} × {r1, . . . , rm} ,

where ri = iε and m = [1/ε2]. For each α = (β, t) ∈ A, we introduce the
weight sequence

γα = (γα(j))1≤j≤p

with the elements

γα(j) = 1{1≤j<j∗} +
(

1− (j/ωα)
β
)
1{j∗≤j≤ωα} .

Now we define the set Γ as

Γ = {γα , α ∈ A} .
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Monte Carlo simulations

Model

For the Monte Carlo simulations we chose a 1-periodic function which is
defined as

S(t) =


|t − 1

2 | if 1
4 ≤ t ≤ 3

4 ,

1
4 elsewhere,

where 0 ≤ t ≤ 1.
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Monte Carlo simulations

Model

We simulate the model

dyt = S(t)dt + dξt and ξt = 0.5dwt + 0.5dzt .

Here zt is the semi-Markov process defined through i.i.d. sequence (Yj )j≥1

and (τk)k≥1

Yj ∼ N (0, 1) and τk ∼ χ2
3 .
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Monte Carlo simulations

Model

We use the model selection procedure with

ρ = (3 + ln n)−2 .

The parameters of the weight coefficients :

ri =
i

ln n
, m = [ln2 n] and k∗ = 100 +

√
ln n .
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Monte Carlo simulations

Empirical risks

We define the empirical risk as

R =
1

p

p

∑
j=1

Ê
(
Ŝn(tj )− S(tj )

)2
,

where the observation frequency p = 100001 and the expectations was
taken as an average over N = 10000 replications, i.e.

Ê
(
Ŝn(.)− S(.)

)2
=

1

N

N

∑
l=1

(
Ŝ l
n(·)− S(·)

)2
.
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Monte Carlo simulations

Empirical risks

We set the relative quadratic risk as

R∗ = R/‖S‖2
p and ‖S‖2

p =
1

p

p

∑
j=0

S2(tj ) .

In our case ‖S‖2
p = 0.1883601.
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Monte Carlo simulations

Model

The table below gives the values for the sample risks for different numbers
of observations n.

n R R∗
20 0.0398 0.211

100 0.0091 0.0483

200 0.0067 0.0355

1000 0.0022 0.0116

Table : Empirical risks
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Monte Carlo simulations

n = 20
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Monte Carlo simulations

n = 100
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Monte Carlo simulations

n = 200
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Monte Carlo simulations

n = 1000
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Efficient estimation

Lower bound

We show that the Pinsker constant in this case has the following form

R∗k = ((2k + 1)r)1/(2k+1)
(

k

(k + 1)π

)2k/(2k+1)

.

To this end we denote by Πn the set of all estimators Ŝn measurable with
respect to the sigma-algebra σ{yt , 0 ≤ t ≤ n}.
It is well known that for the simple risks the optimal (minimax) estimation
convergence rate for the functions from the set W k

r is n2k/(2k+1) (see, for
example, Pinsker (1981), Nussbaum (1985)).
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Efficient estimation

Lower bound

Theorem

We obtain the following lower bound

lim inf
n→∞

v
2k

2k+1
n inf

Ŝn∈Πn

sup
S∈W k

r

R∗n(Ŝn,S) ≥ R∗k ,

where vn = n/σ∗.
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Efficient estimation

Upper bound

Theorem

The robust risk for the model selection procedure Ŝ∗ admits the following
asymptotic upper bound

lim sup
n→∞

v
2k

2k+1
n sup

S∈W k
r

R∗n(Ŝ∗, S) ≤ R∗k .
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Efficient estimation

Efficient estimation

Theorem

Under the conditions listed above

lim
n→∞

v
2k

2k+1
n inf

Ŝn∈Πn

sup
S∈W k

r

R∗n(Ŝn, S) = R∗k .

We obtain the efficiency

lim
n→∞

inf Ŝn∈Πn
supS∈W k

r
R∗n(Ŝn,S)

supS∈W k
r
R∗n(Ŝ∗, S)

= 1 .
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Efficient estimation

Efficient estimation

It should be noted that the equality means the robust efficiency holds with
the convergence rate

v
2k

2k+1
n and vn = n/σ∗ .

If the distribution upper bound σ∗ → 0 as n→ ∞ we obtain a faster rate
with respect to n2k/(2k+1), and if σ∗ → ∞ as n→ ∞ we obtain a slower
rate. In the case when σ∗ is constant the robuste rate is the same as the
classical non robuste convergence rate.
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Main tool

Renewal density

We recall that the process zt is defined through the renewal process

Nt = ∑
k≥1

1{∑k
j=1

τj≤t}
,

where (τj )j≥1 arei.i.d. positive random variables with the density g . Let us
denote by η the renewal density

η(x) =
∞

∑
l=1

g (l)(x) ,

where g (l) is the lth convolution power of the density g .

S. Pergamenchtchikov Model selection
International Conference ”SAPS XI”, Saint Petersbourg, Russia, July 20, 2017 Joint work with V. Barbu and S. Beltaief 34

/ 37



Main tool

Renewal density

Goldie (1991)

Theorem

Under some technical conditions the renewal density ρ is such that

ρ(x) =
1

Eτ1

+ ∆(x) ,

where ∆(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ|∆(x)| < ∞ for all γ > 0 .
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Conclusion

Conclusion

In the conclusion we would like to emphasize that in this talk :

we construct a selection model procedure based on the weight least
square estimators;

we find conditions for which we obtained an sharp non asymptotic
oracle inequalities for the simple quadratic risks and for the robust
risks as well;

using the Pinsker method we obtain a lower bound for the robust
quadratic risks, then, through the obtained sharp oracle inequalities
we show that the risk upper bound for the constructed procedure
matters this lower bound, i.e. the procedure is efficient in the
adaptative setting.
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Conclusion

Conclusion

THANK YOU VERY MUCH

FOR YOUR ATTENTION !!!
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