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Plan of the talk

We remind the definition of maxisets in nonparametric estimation.
The assignment of maxisets of linear procedures will be provided
(Kerkacharian and Picard (1992) and Rivoirard (2004)).

We introduce the notion of maxiset for the problems of
nonparametric hypothesis testing.

The maxisets of the most widespread nonparametric test statistics
will be established: sum of squares of estimators of Fourier
coefficients, L>-norms of kernel estimators, X2—tests, Kramer- von
Mises tests.

The asymptotically minimax tests and estimators on maxisets are
established (earlier for such functional sets the results were known
only for wavelet bases).
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dY,(t) = f(t)dt + indw(t), te(0,1),0>0 (1)

vn
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Maxisets. Nonparametric Estimation

Estimator f, has minimax rate of convergence n~" on the set V if

Cin~2" < sup E||fp — f||? < Gon™?" 2)
fev

The set V is called n~"-maxiset for estimator #, if the following
statement holds.

The estimator has minimax rate of convergence n~" on the set U
iff U C AV for some A > 0.
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Maxisets of Linear Procedures

Kerkacharian and Picard (1992) showed that balls
B3, (Po) = H(s, Po) in Besov space B5, with r = 1% are
n~"-maxisets for kernel and projection estimators.

/ (FD(x + t) — FD(x))?dx < L|t[2D

where | = [s].
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For the proof Kerkacharian and Picard (1992) have implemented
wavelet technique. For the wavelet basis the balls in Besov spaces
B3, have the following assignment

o0 2k fo%) 2k
Bso(Po) =S F:f=> ) O, sup2** Y "> 07, < Py
k=1 j=1 A>0 KA j=1
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Rivoirard (2004) showed that for linear projection estimators
satisfying some weak assumptions the maxisets are described in
following form

H(s,Po) = B5,(Po) =S f:f = 0, supA* > 62 < Py
j=1 s J>A

He studied projection estimators building on arbitrary orthogonal
systems of functions. For wide class of orthogonal systems of
functions the sets B5__(Po) are balls in Besov spaces B3 __.
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Maxisets in nonparametric hypothesis testing

7

The problem is to test the hypothesis

dYn(t) = f(t)dt + —=dw(t), te(0,1),0 >0 (3)
Ho: f(x)=0, xe€(0,1)
versus nonparametric alternatives

Hy: f € Vo= Vo(Po)={f:||f]|>cn ", fePU}
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For any test K, = K,(Xi,...,Xy) denote a(K},) its type | error
probability and (K, f) its type Il error probability for the
alternative f € L5(0,1). Denote

B(Kn, Vi) = sup{B(Kp, f),f € V,}.

We say that, for the test statistics T,(Y}), the problem of signal
detection is n~"-distinguishable on the set PyU if there is sequence
of tests K|, generated T,(Y},) such that

limsup(a(Ky) + B(Kn, Vi) < 1 (4)

n—oo
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Desirable definition of maxisets and maxispaces

We we want to find the functional Banach space L C L(0,1) such
that

problem of signal detection is n~"-distinguishable on the ball in L

Forany f ¢ L, f € L5(0,1), there are functions fip,...,fx,n € L

such that .
IF=> fall>cn"
i=1

and

i=1
(the right-hand side of (??) may be greater then 1 — a. We shall
consider the worst case.)

kn
B(K,,,f—Zf,-,,) —1-a, oK, =a (5)

L contains the functions of the largest possible smoothness for this
setup.
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Empirical Discussion

Let us discuss the content of the first two points of this definition.

Let f ¢ L. Then there are functions fi,, ..., fx,n € L such that

kn
1F = fnll = en™"
i=1

and

kn
6<K,,,f—Zf,-,,> —1-a, aK,)=a (6)

i=1

However, if i, € V,(Pin), Pin — oo then S(K,, fin) may also tends
to 1 — a. Thus, if we take f = 0 and implement such a definition,
we get that f =0 ¢ L.
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Conclusion

| see two ways of solution of this problem.

i. to prove that

Kn
B(Kn =Y fn) > 1—a
i=1

faster then
/B(Kn, f;n) — 1 —«

ii. Introduce some limitations on functions f;,

We shall consider more simple ii. We suppose that functions f;,
should belong to specially defined finite dimensional spaces I1;.
These spaces are constructed by unit ball U of maxispace L.
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Third point of definition

We can take arbitrary sequence of unsmooth functions and search
for the maxispace L containing these functions. Thus the maxiset
problem is ambiguously defined without the last condition.
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Preliminary definition and notation

Let L C L»(0,1) be Banach space with norm || - ||, and let
U={x:||x|]|lt £1,x € L}, be the unit ball in L.

Denote di = max{||x||,x € U} and denote e; vector e; € U such
that ||e1|| = di1. Roughly speaking, vector €; is vector of U on
which i-width attains their value.

The further definition has inductive character. For i =2,3, ...
denote d; = max{||x|[,x € U, < x,e >=0,1 <j < i}. Define
vector e; such that ||ej|| = dj,e; € U, < ej, ex >= 0 for
k=1,...i—1

Denote [I1; linear space generated vectors ey, ..., ¢e;. For any

x € L2(0,1) denote xp, the projection of vector x on subspace [1;
and X; = x — xn;. Such a definition allows us to study the
behaviour of "the tail” of the vector x.
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Formal maxiset definition

We say that L is maxispace and pU, i > 0 is maxiset for test
statistics T, generating sequence of tests Kj,,
a(Kn) = a1+ 0(1)),0 < a < 1, if there holds

lim sup(a(Kn) + B(Kn, Va(p)) <1 (7)

n—oo

and for any x ¢ L, x € L(0,1), there are sequences iy, j;, such that
||| > cji:’ and

lim sup(a(K;,) + B(Ki,, %i,)) = 1 (8)

n—oo
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Suppose that functions eg, e, ... are sufficiently smooth. Then,
considering the functions X; = x — xp, we "in some sense delete a
smooth part of function x and study the behaviour of remaining
oscillating part.”

In definition of maxispace we associate with each x € L»(0,1)
vectors X; having small norms and cover by our consideration all
space L,(0,1)

In all further setups we show that the arising maxispaces are Besov
spaces B5_. For quadratic tests we have more general situation.
The assignment of maxispaces in some orthonormal basis coincide
with the assignment in trigonometric basis of Besov spaces B5__.

Mikhail Ermakov St.Petersburg State University E-mail: erm2  On asymptotically minimax nonparametric estimation and dete



Maxispaces for quadratic test statistics

We consider a problem of signal detection on a sequence space.
We observe -

ﬁﬁj» 1<j<o (9)
where y; = [ ¢;jdY,(t),0; =< f,¢; >,& = [ ¢jdw(t).

The problem is to test the hypothesis Hp : f = 0 versus alternative
H,:feV,.

yj=0;+

The test statistics are the quadratic forms
(o] o0
2 2 -1 2
T =Y Y
j=1 j=1

with some coefficients Iijzn >0
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Since the talk contains a lot of results Theorem will be provided
only for the test statistics having the following form

kn
Tn(Yn) = ny - a2n_1k,,
Jj=1
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. Then r = 25

Denote s = Geq 1

The space B3 is maxispace for the test statistics T,(Y,) with

2
k, =< n?~4 = pis

Here

H(s, Po) = B3oo(Po) = { f : f = ZQJ¢17 sup )\25292 < Py
J>A
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Kernel-based tests

We consider the problem of signal detection on a circle.
Define kernel estimator

, 1 [ [t
fn(t):h/ K< h“)dYn, te (0,1)

o

where h,, is a sequence of positive numbers, h, — 0 as n — 0.
The kernel K is bounded function such that the support of K is
contained in [-1,1], K(t) = K(—t),t € R! and [ K(t)dt = 1.
We consider the kernel based tests with test statistics

~1,1/2 _ ~ _
To(Ya) = 0720 2 2 (|I%112 = (nha) YK [?)

o? _/(/ K(t—s)K(s)ds)zdt.

where



-2
For the kernel-based tests with h, =< n* ~2 = ni+s Besov spaces

. — : __ _2s
500 With s = 55— are n™"-maxispaces. Here r = ;225




Chi-squared tests

Let X1,..., X, be i.i.d.r.v.’s with c.d.f. F(x),x € (0,1). Let c.d.f.
F(x) has a density f(x) = dF(x)/dx,x € (0,1). Suppose that
f € L»(0,1) with the norm

1/2

|f|| = </01 f2(x)dx> < 00.

We explore the problem of testing hypothesis
Ho : f(x) =1,x € (0,1)
versus nonparametric alternatives
Hy:feV,=V,(Py)={f:||f =1|| = en ", f € U(Py)}

where U(Pp) is a ball in some functional space L C L(0,1). Here
r,c,c > 0,0 < r <1/2, are constants and P(}/z is the radius of a
ball U(Py).

For this setup the same definition of maxiset and maxispace can be
implemented.



Definition of y*-tests

Let F(x) be empirical c.d.f. of X1,...,X,.
Denote pi, = F((i +1)/kn) — F(i/kn),1 < i < kp.
Test statistics of x>-tests equal

kn
Tn(":_n) = knn Z(Isin - ]-/kn)2
i=1



. _ 2 .
For the y?-tests with k, =< n>~4" = nT+% Besov spaces B3, with
_ _r —r_ H _ _2s
S = 574 are n”'-maxispaces. Here r = ;72



Discussion

Besov spaces B;__ does not contain stepwise functions. It seems
strange. The definition of y? - tests is based on indicator
functions. Thus x? - tests should detect well distribution functions

with stepwise densities.
Let us consider x? - test with k, = 2/ Then X2 - test statistics

admit representation

I, 2f

To(Fa) = kan D> 55
i=1 j=1
with

. 1 <&
Pij =~ > ii(Xm)
m=1

where ¢;; are functions of Haar orthogonal system.



Implementing the same reasoning as in the case quadratic test
statistics we get that y? - test statistics have maxisets

o 2k 0o 2k
Bswo(Po) = Fif =14 Bijdw, sup 222NN " pE < Po
k=1j=1 koA j=1

This statement is true as well.
Suppose function f is sufficiently smooth and f3; are Fourier
coefficients of f for Haar orthogonal system. Since

Bij = 27K/29(j27K)(1 + o(1)) then

2k 2
> By= C2k/2/ <Z£> dx(1 + o(1))
j=1

Thus we saw that f does not belong to B5__ for such a setup.
Kernel-based tests also detect stepwise densities well. However
these densities also does not belong corresponding maxispace.



Maxispaces for Cramer-von Mises tests

We shall consider Cramer- von Mises test statistics as functionals
T(Fn — Fo) depending on empirical distribution function F,

T2(F, — Fo) :/0 (Fa(x) — Fo(x))?dFo(x).



The space B35, with s = 1Er2r is n~"-maxispace for Kramer-von

Mises test statistics. Here r =

_S
242s"



Asymptotically minimax estimators on maxisets

. For wavelet setup asymptotically minimax estimators for are
wellknown B5__ (see |.Johnstone. Gaussian Estimation: Sequence
and Wavelet Models Ch 14 to be published)

oo 2k

Bgoo(PO) == f:f= Zzgkj¢kj7 sup 22ks 202 <Py

k=1 j=1

Asymptotically minimax tests one can find in Ingster and Suslina
(Problems of Information Transmition (1998) v.34).



Minimax estimators on maxisets. Trigonometric system of

functions

H(s, Po) = B3,o(Po) = { f : f = ZHJ¢17 ilipAQSZé’z < Py
J>A



Minimax estimators on maxisets. Linear estimators

. The results will be provided in terms of sequence model. Let we
observe a random sequence y = {yj}fi1 of observations

yi=xj+eoi§, €>0, 1<)j<o0

where o; > 0 are known constants and ;,1 < j < oo, are
independent Gaussian random variables E€; = 0 and E§J-2 =1
The problem is to estimate the parameter x = {x;}2;.

Denote o = {0;}72; and § = {§}72;.
For the estimation with fixed € > 0 we suppose a priori information
is provided in the following form

x € B=B(a,Py) =< x={x}?2; : sup 3;1 ZXJ? <Py (1)
k .
j=k

where a = {ax}72, and ax > 0 is decreasing sequence.



We say that linear estimator X = {%;}72; is minimax in the class
of linear estimators
e = {)?Ej/\j}j.i]_’)?ejAj = )‘j}/p>\j € Rl’ 1<) <o, A= {)‘j}j.i]_y if

sup Ex||& — x||* = inf sup Ec|%x — x][*. (2)
xeB A xeB

The minimax estimator in the class of linear estimators will be
established if the following assumptions hold.
Al There is ¢ > 0 such that ¢ < 012 < oo for all j.
A2 Forallj>1
o?(aj_1 — aj)
j\dj—-1 'j

A LY (3)
o7 1(aj — ajs1)



Assume Al1,A2. Then the linear estimator é,\ with

Po(aj — ajt1)
A= i : 4
T Po(aj — aj11) + €207 )

is minimax on the set of all linear estimators.
The minimax risk equals

o P()O' — daj 1)
2 J—
c =€ 5
JE:Poaj—aj 1)+€2]2 ()




Asymptotically minimax estimators on maxisets.

We say that the estimator X, is asymptotically minimax if

sup  Ex||%—x|?= inf sup E|%—x|[*(1+0(1)) (6)
x€B}.,(Po) %€V xeBs (Po)

as € — 0. Here V is the set of all estimators.

we replace A2 more simple assumption.

B1. For all j > jp
o_J?jZS—I—l

o 1(j —1)*H!

> 1. (7)



Assume Al1,B1l. Then the linear estimator HA,\ with

A 2rPyj %1

= . 8
A 2sPyj—2s—1 ezafyj (8)

is asymptotically minimax on the set of all estimators.
The asymptotically minimax risk equals

X 2rPyj 107

R. = ¢ J__(1 1)). 9
¢ ;%Pojzsl—{-ezo’f( +o(1)) )




The estimator GAA is maximum penalized likelihood estimator with
quadratic penalty function

[e.e]
1/2P(;1 ijs-i-le
j=1

This is the standard penalty function for spline estimators. Thus
spline estimators are asymptotically minimax on Besov balls

This estimator can be also considered as the estimator of Tikhonov
regularization algorithm with corresponding regularization
addendum.



Bayes approach

The asymptotically minimax estimator and Bayes estimator with a
priory Gaussian measure 0; = N(0,2rPoj~2"1) coincides. Here
0;,1 <j < oo areir.v.'s. The risks coincides as well.

If we consider asymptotically minimax estimation on ellipsoid

(o)
0 c 9:212/30}3130 , b — o0
j=1

then asymptotically minimax risk r,. have the same order as Bayes
risk for a priori Gaussian probability measure with
0; = N(0,;=2%~1) (see Ermakov Inverse Problems (1990)).

For the talk setup we have the sharp equality of asymptotically
minimax and Bayes risks.

Since variances UJ? are not the constant the results are transfered

automatically on the linear ill-posed inverse problems with random



Asymptotically minimax tests for maxisets

Our goal is to test the hypothesis

versus the alternative
He:  [IfI* > pe >0,
if a priori information is provided that
0 € Bso(Po) = f: F(t) =) 0i(t), k2> 07 <Py, 1< k<oo
j=1 j=k

with Py > 0. Here ¢;,1 < j < oo, is orthonormal system of
functions.



For wide class of orthonormal systems of functions ¢;,1 < j < oo
the space

0:0(t) = 0i¢;(t), k> ) 67 <oo,t€(0,1),1< k<0
j=1 j=k

is Besov space Bj__



Asymptotically minimax test statistics

Define k = k. and k? = k2 as a solution of two equations

2rk2 12 = Py (10)
and
kek? 4+ k7% Py = pe. (11)
Denote 7 = k2, for 1 < j < ke and k7 = Po(2r)~ 1771, for
J > ke

Define test statistics

T2(Y. 425

o0
A = E Hj}.
j=1



For type | error probabilities o, 0 < o < 1, define critical regions
Sea - {y : (Tea(y) - 672/)6)(2/46)71/2 > Xoc}

with x, defined by equation

a=1-d(xy) = (2n)" /2 /OO exp{—t?/2} dt.

X



Let

0 < lim mf Ac << limsup A. < 00. (12)
e—0

Then the tests L2 with critical regions S? are asymptotically
minimax with o(L?) = a(1 + o(1)) and

Be(L2) = O(xa — (A/2)?)(1 + o(1)) (13)
as € — 0.

88
Example. Let p. = Re*+1. Then

4r—1

A (Po V2rgry2/ R \'7
<\ 2r 4r+1\2r+1 '
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