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Pseudo-Poisson Process as a subordinator

Let (ξ) = ξ0, ξ1, . . . be a random sequence;

Π(s), s ≥ 0, be the independent of (ξ) standard Poisson process with an

intensity λ > 0.

We de�ne a subordinator for a �forming� sequence (ξ) with a �leading�

Poisson process by the following random change of the discrete

mathematical time

ψ(s) = ψΠ(s) = ξΠ(s), s ≥ 0 . (1)

Poisson subordinator driving the discrete time of a Markov sequences is

given and examined in the famous Feller's monograph (II Vol., Chap.

X.). In this monograph such kind of subordinators are referred to the

�Pseudo-poissonian processes�.

Generally, for the arbitrary forming sequence (ξ) we name the process ψ

as the process of Poisson (random) Stochastic Index (process PSI)



Spacings and their model interpretations

In fact, the process PSI marks the spacings of the leading Poisson

process Π by terms of the forming sequence ξ.

Replacements: At every moment of a jump of the Poisson process

the corresponding term (element) from the forming sequence is

replaced with the next term.
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Figure: Marked spacings

The lengths of spacings τ1, τ2, . . . have to be i.i.d. random variables

taking Exp(λ) distributed values.



Simple examples

I If (ξ) = 0, 1, 2, . . . , then the process PSI is equal in

distribution to the Poisson process

I If ξn =
∑n

j=1 εj , (εj) is the sequence of i.i.d. random

variables,
∑0

j=1 = 0, then the Poisson psi-process is equal in

distribution to the Compound Poisson process. In this

well-known and examined case the process ψ has independent

increments.

I If ξ consists of i.i.d. random variables with the symmetric

binary distribution ξ0 = ±1 with probability 1/2, then the

process PSI is equal in distribution to the Telegraph process

with the intensity λ/2.



Representation in the form of random weighted sums. Main

covariance property

I The following representation in the form of random weighted

sums with weights of the indicator type takes place

ψΠ(s) =
∞∑
j=0

ξj1I{Π(s) = j} . (2)

I Suppose, that IEξ0 = 0, IDξ0 = 1, ξ0, ξ1, . . . � i.i.d. rv's, then

cov(ψ(s), ψ(u)) = exp{−λ(u − s)} u ≥ s ≥ 0 . (3)

I Remark The exponential form (3) of the covariance is the

same as for the Ornstein-Uhlenbeck covariance.



Covariance property in the arbitrary stationary case

Let the covariance function of (ξ) exist and

be equal to r(n), n ∈ Z+. In this case for

u ≥ s ≥ 0

cov(ψ(s), ψ(u)) = IE{r(Π(u − s))} . (4)



Sums of independent processes PSI for Gaussian limits

Let ψ1, ψ2, . . . be independent copies of the

process PSI ψ(s), s ≥ 0, when the forming

sequence (ξ) consists of i.i.d. rv's, IEξ0 = 0,

IDξ0 = 1. Consider the sums of (ψ)

normalized by
√
N

ΨN(s) =
1√
N

N∑
i=1

ψi(s) . (5)



The Main Functional Limit Theorem

Theorem 1. Consider the piecewise constant random broken lines

which are constructed by the values of the process ΨN(s). Let us

de�ne them as elements of the Skorokhod space D[0,Θ], [0,Θ] 3 s,

Θ ≤ ∞.

Then the following weak convergence in the Skorokhod space

D[0,Θ] takes place as N →∞,

ΨN(s) =⇒ U(s) , (6)

where U is the standard Ornstein-Uhlenbeck process: stationary,

gaussian, markovian process with zero mean and with the variance

which equals 1. Moreover, cov(U(0),U(s)) = exp{−λs}.



Wiener-Ornstein-Uhlenbeck (WOU) random �eld

Let us de�ne the multi-index process, t ∈ [0, 1], s ≥ 0, � prelimit

random �eld:

ΨN(t, s) =
1√
N

[Nt]∑
i=1

ψi (s) , (7)

where (ψi (s)) are de�ned as for Theorem 1, [·] denotes the integer part.

Let us introduce the Wiener-Ornstein-Uhlenbeck (WOU) random �eld

Z (t, s):

1) centered gaussian function de�ned on IR+ × IR;

2) cov(Z (t1, s1),Z (t2, s2)) = exp{−λ|s2 − s1|}min(t1, t2), λ > 0.

The WOU �eld is the tensor product of the Brownian motion and the

Ornstein-Uhlenbeck process.



Convergence to the Wiener-Ornstein-Uhlenbeck Field

Theorem 2. The following convergence of the �nite dimensional

distributions takes place as N →∞,

ΨN(t, s)⇒ Z (t, s) t ∈ [0, 1], s ≥ 0 . (8)

Moreover, the coe�cient λ for Z is the same as the intensity

coe�cient of the leading Poisson process Π.

I The time t we name the extrinsic time.

I The time s we name the intrinsic time.

Fixing the value t∗ of the extrinsic time we obtain the

Ornstein-Uhlenbeck process with viscosity λ and with the variance

of the truncations t.

Fixing the value s∗ of the intrinsic we obtain the standard Brownian

motion Z (t, s∗) = W s∗(t).



The Figure: the Bm of Residual Dependence, and Bm of

Innovations
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Figure: Transition Characteristics and the Brownian Bridges



Random Intensity for the Intrinsic Time

De�nition. Poison subordinator with a random intensity λ(ω) for

the sequence (ξ), or Double Stochastic Pseudo-Poisson Process

with a random intensity λ(ω) drawn at the initial time we de�ne as

follows

ψλ(ω) = ψλ(ω)(s) = ψ(s; λ(ω))
4
= ξΠλ(ω)(s), s ∈ IR+ , (9)

where

Πλ(ω)(s)
4
= Π1(sλ(ω)), s ∈ IR+ , (10)

Π1 is the standardized Poisson process (with the intensity equals

1); the positive random variable λ(ω), (ξ), and Π1 are jointly

independent; a distribution function for λ(ω) we denote Fλ(ω)(x),

x ∈ (0,∞).



Stationarity for Double Stochastic Pseudo-Poisson Process.

Laplace transform as a covariance

Lemma 1. Suppose that the formed sequence (ξ) is i.i.d.

Then the subordinator ψλ(ω)(t) is a strictly stationary process.

Suppose that IDξ0 = 1, then [auto]covariance function is equal

a the Laplace transform Lλ(ω)(s), s ∈ IR+, for the distribution

function of λ(ω)

cov
(
ψλ(ω)(v), ψλ(ω)(s + v)

)
=

∞∫
0

exp{−ys}dFλ(ω)(y)
(11)



Random Intensity of the Intrinsic Time follows to a L�evy

process with positive a.s. increments. Covariance.

Lemma 2. Let LΛ(t)(s), s ≥ 0, denote a Laplace Transform over

s ∈ IR+ for a truncation of the random process Λ(t) at any arbitrary

but �xed moment of time t > 0. Then for i.i.d. (ξ) with IDξ0 = 1,

cov(ψΛ(u), ψΛ(v)) = LΛ(u−v)(1), u > v ≥ 0 , (12)

i.e. in this case of random intensity we calculate the corresponding

Laplace Transform at the point 1.
Curious Example. Suppose that Λ(t) ia a (standard) subordinator in the �classical

sense" (for Brownian motion), i.e. it is the Le�vy process with positive α-stable

increments, 0 < α < 1. Then it follows from Lemma 2, that

cov(ψΛ(u), ψΛ(v)) = LΛ(u−v)(1) = e−(u−v), u > v ≥ 0 , (13)

because in this case the Laplace Transform of LΛ(t)(s) = e−t sα . The OU covariance

again!



Stationarity for Double Stochastic Pseudo-Poisson Process.

Case of stationarity (ξ).

Lemma 3. Let (ξ) be a stationary sequence with IDξ0 = 1 and

R(n) be the covariance function for (ξ), n ∈ Z+. Then for

u ≥ s ≥ 0,

cov(ψλ(ω)(s), ψλ(ω)(u)) =

∞∫
0

ER(Πx(u − s))dFλ(ω)(x)

=

∞∫
0

∞∑
j=0

R(j)
((u − s)x)j

j!
e−(u−s)x

dFλ(ω)(x)

(14)



Covariance Formula for Poissonian Subordinators for AR(1)

Stationary Sequences

Assume that the forming sequence (ξ) is a stationary one. Then the

corresponding process ψ(s) is a stationary one, s ≥ 0.

Proposition 1. Let the sequence (ξ) be a stationary of type of the

AR(1) form

ξn+1 = e−γξn + εn+1 ,

where γ > 0, n = 0, 1, . . ., (εn) is a sequence of i.i.d. rv's; the

sequence (ξ) is a centralized one, Eξn = 0, Dξn = 1. Then for

u ≥ s ≥ 0,

cov(ψ(s), ψ(u)) = IE exp{−λ(ω)(1− e−γ)(u − s)} . (15)

Thus, in this case the corresponding covariance is a Laplace

transform of λ(ω)(1− e−γ) at the point u − s.



Gamma case for random intensity drawn at initial time

Fact 1. Assume that IE{λ2(ω)} <∞. Then for s ≥ 0

IEΠλ(ω)(s) = sIE{λ(ω)},

IDΠλ(ω)(s) = s (IE{λ(ω)}+ ID{λ(ω)}) .

Let us consider the case of Γ-distribution for λ(ω) with a scale

parameter γ > 0 (variable) and the (�xed) shape parameter κ > 0

(here for the Exponential distribution, i.e. for κ = 1, the density is

(1/γ) exp(−t/γ), t ≥ 0). In this case IE{λ(ω)} = κγ, and

ID{λ(ω)} = κγ2. Applying the calculated above expressions for

IEΠλ(ω)(s) and IDΠλ(ω)(s), s ≥ 0, one can obtain that:

IEΠλ(s) = sκγ,

IDΠλ(s) = sκγ + sκγ2.



Random Intensity is a Random Scale Parameter for the Poisson Time Driven by a

Positive L�evy Process

Consider a case for a random intensity when λ is a process L�evy with positive

increments. So, λ = λ(s, ω) with a time parameter s ≥ 0.

In this case the L�evy process λ(s, ω) generates an independently scattered random

measure on [0,∞) with stationary increments and with the Lebesgue structural

measure. The process Πλ(s, ω)(s) is a homogeneous and a Markov one.

Fact 2. Assume that IE{λ2(1, ω)} <∞. Then for s ≥ 0

IEΠλ(s, ω)(s) = IE{λ(s, ω)},

IDΠλ(s, ω)(s) = IE{λ(s, ω)}+ ID{λ(s, ω)}.

Assume that λ(s, ω), s ≥ 0, is the Γ-process L�evy with the corresponding space-scale

parameter γ > 0 and the time-scale parameter κ > 0, i.e. λ(1, ω) has the Γ(γ, κ)

distribution possessing the in�nitely divisible property. In this case

IEΠλ(s, ω)(s) = sκγ,

IDΠλ(s, ω)(s) = sκγ + sκγ2.



Martingale Properties for the Considered �Double

Stochastic Poisson Processes�

Lemma 4. Let the random intensity λ(ω) be drawn at the initial

moment of time and have a �nite mean value. Let us de�ne a �ltration

{F1(s)}s≥0 as follows: for any �xed v ≥ 0

F1(v) = σ(Π1(rλ(ω)), 0 ≤ r ≤ v)}. Then the process

Πλ(ω)(s)− sIE{λ(ω)} is a martingale with respect to {F1(s)}s≥0.
Let the random intensity λ(s, ω) be driven by a positive L�evy process and

have a �nite mathematical expectation for some positive s. Let us de�ne

a �ltration {F2(s)}s≥0 as follows: for any �xed v ≥ 0

F2(v) = σ(Π1(λ(r , ω)), 0 ≤ r ≤ v)}. Then the process

Πλ(s, ω)(s)− IE{λ(s, ω)} is a martingale with respect to {F2(s)}s≥0.



Reminder: Double Stochastic Pseudo-Poisson Process

Consider a PSI-process with random intensity: for a random

intensity λ = λ(ω), a standard Poisson process Π1(t) and a

sequence of i.i.d. random variables ξ0, ξ1, . . . with IEξ0 = 0,

IEξ20 = 1, all independent, de�ne

ψ(t) = ξΠ1(λt).

Consider its independent copies ψk , k = 1, . . . ,N, and de�ne

ΨN(t) =
1√
N

N∑
k=1

ψk(t).

Note that the Poisson processes and intensities are di�erent in each

copy, so one should write

ΨN(t) =
1√
N

N∑
k=1

ξ
(k)

Π
(k)
1

(λk t)
.



Functional limit theorem for Double Stochastic

Pseudo-Poisson Process

Impose the following restrictions:

I either IEλ <∞ and IEξ40 <∞;

I or IP(λ > x) ∼ cx−γ as x →∞ for some γ ∈ (0, 1), c > 0,

and Eξ4h0 <∞ for some integer h > 1/(2γ).

Theorem 3. In these settings there is a convergence

ΨN(t)⇒ Uλ(t) in the Skorokhod space D[0,1], with Uλ a Gaussian

centered stationary process with the covariance function

IEUλ(t)Uλ(s) = Lλ(|t − s|),

where Lλ is the Laplace transform of λ:

Lλ(t) = IE
{

exp(−tλ)
}
, t ≥ 0.



Su�cient conditions for convergence in D[0,1]

from Billingsley's book

Convergence in D[0,1] takes place if

IE
{

(ΨN(t)−ΨN(s))2h(ΨN(u)−ΨN(t))2h
}
≤ C (u − s)1+ε

for some h > 0 and ε,C > 0 and all 0 ≤ s ≤ t ≤ u ≤ 1.

For �xed s, t, u the di�erences ΨN(t)−ΨN(s) and ΨN(u)−ΨN(t)

are sums of independent random variables, but are dependent.

Many of these random variables are zero. This brings an idea to

partition the set of indices {1, . . . ,N} into 4 classes. This partition

is random and independent of ξ
(k)
i but depends on the Poisson

processes Π(k) and intensities λk .



Random partitions for sums of PSI-processes

For �xed s ≤ t ≤ u consider sets Ai ,j , i , j ∈ {0, 1}:
I k ∈ A0,0 if Πk(λkt) has no jumps in [s, u];

I k ∈ A0,1 no jumps in [s, t), jumps in [t, u];

I k ∈ A1,0 jumps in [s, t), no jumps in [t, u];

I k ∈ A1,1 jumps in [s, t), jumps in [t, u].

Their sizes follow multinomial distribution:

IP
(
|A0,0| = n0,0, |A0,1| = n0,1, |A1,0| = n1,0, |A1,1| = n1,1

)
=


N!

1∏
i ,j=0

(pi ,j)
ni,j

ni ,j !
, n0,0 + n1,0 + n0,1 + n1,1 = N,

0, otherwise.

Only summands with indices from A1,1 are dependent.



Random partitions for sums of PSI-processes II

The parameters pi ,j can be expressed in terms of the Laplace

transform of the random intensity λ:

p0,0 = IE
{
IP
(
Π(λu) = Π(λs)|λ

)}
= IE

{
IP
(
Π(λ(u − s)) = 0|λ

)}
= IE

{
e−λ(u−s)

}
= Lλ(u − s).

Similarly,

p0,1 = Lλ(t − s)− Lλ(u − s),

p1,0 = Lλ(u − t)− Lλ(u − s),

p1,1 = 1− Lλ(t − s)− Lλ(u − t) + Lλ(u − s).

This explains tail conditions on λ which can be also restated

in terms of asymptotics of Lλ at 0.



Why moments of ξ are needed when λ has a heavy tail?

Example: Suppose both λ and ξ have heavy tails: for some γ, β > 0

IP(λ > x) ∼ x−γ , IP(ξ > x) ∼ x−β , x →∞.

Then for some a ∈ (0, 1) and large N

IP
(
max{λ1, . . . , λN} > N1/γ

)
> a.

Suppose it is λk > nγ := [N1/γ ], then

IP
(
ψk has at least nγ jumps on [0, 1]

)
> a/2.

Let max{ξ(k)
0
, . . . , ξ

(k)
nγ } = ξ

(k)
` , then

IP
(
ξ

(k)
` > N1/(βγ)

)
> b ∈ (0, 1)

and its neighbours ξ
(k)
`−1 and ξ

(k)
`+1

are much smaller. If 1/(βγ) > 1/2, that

is β < 2/γ, then the jump of ψ(k) is not killed by scaling 1/
√
N of ΨN .

So one needs β > 2/γ to get a continuous limit; we require slightly more:

β > 4k0 with k0 = min{k ∈ N : 4k > 2/γ}.



Applications and statistical processing of Saint-Petersburg real estate data.

Admiralty district

We process in dynamics a number of real data from real estate market in

Saint-Petersburg, Russia. We analyze statistically empirical distributions of the real

estate prises as well for input and output �ows (stream) in the book of prices, as for

truncations in time of the full population of objects of the real estate market.

Statistical inferences are as follows:

I the hypotheses of Log-Normality of the prices are veri�ed by the

Kolmogorov-Smirnov (KS) test uniformly over more than 5 years of

observations. Moreover, the �round� Kolmogorov-Smirnov test veri�es a

hypotheses of joint normality for logarithms of the input and output streams;

I accumulated averages increase linearly as well for the input stream, as for the

output stream;

I accumulated variances increase very close to a linear grows as well for the input

stream, as for the output stream.

These statistical inferences allows us in future to use the model of Poisson and

�Double stochastic� Poisson subordinators for sequences with the goal to predict log

prises in real estate markets.



Admiralty District of Saint-Petersburg: Fitting Log Normal.
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Figure: Admiralty district of Saint-Petersburg.



Admiralty District of Saint-Petersburg: p-values LN �t
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Initial and Final Input Flow Log Normal Approx
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Initial and Final Output Flow Log Normal Approx
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Initial and Final Standing Flow Log Normal Approx
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Initial and Final Full Flow Log Normal Approx
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Cum Mean and Var for Input Flow
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Cum Mean and Var for Output Flow
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Cum Mean and Var for Standing Flow
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A stochastic model of fractional Brownian motion (fBm)

Following to the Barndor�-Nielsen's representation we de�ne a fractional

Ornstein-Uhlenbeck process (fO-U) UH(t), t ∈ IR, of the Hurst

parameter H ∈ (0, 1], as a Gaussian centered stationary process with the

covariance

r(t) = rH(t) = cov(UH(0),UH(t))

=
1

2

{
e−Ht + eHt − |et/2 − e−t/2|2H

}
, t ∈ IR .

Due to the Lamperti transform the process wH(s)
4
= sHUH(log s), s > 0,

wH(0) = 0 a.s., is a fractional Brownian motion (fBm) process: Gaussian

centered self-similar strictly stationary increments process with the Hurst

parameter H ∈ (0, 1],

cov(wH(s),wH(t)) =
1

2

(
s2H + t2H − |t − s|2H

)
, s, t ≥ 0 .



A stochastic model of fractional Brownian motion (fBm) II.

For t ≥ 0 the following chain of simple equalities allows us to obtain the expression for

r(t) in a form of the Laplace transform of a probability distribution,

r(t) =
1

2
eHt

(
1 + e−2Ht −

(
1− e−t

)2H)

=
1

2
e−Ht +

1

2
eHt

(
1−

(
1− e−t

)2H)
=

1

2
e−Ht +

1

2

∞∑
j=1

(−1)j−1
(2H

j

)
e−(j−H)t ,

where (2H
j

)
=

Γ(2H + 1)

Γ(j + 1)Γ(2H − j + 1)
.

It is not di�cult to check that in the case 0 < H < 1/2 the last expression including t

de�nes a fully monotone function equaling 1 at zero, hence it is the Laplace transform

of a some probability distribution.



A distribution of the random intensity which generates fBm

The following random variable ζH (for 0 < H < 1/2) possesses this

distribution of a discrete type

P(ζH = H) =
1

2
= p0, P(ζH = j − H) =

1

2
pj , j ∈ IN ;

p1 = 2H , p2 =
2H(1− 2H)

2!
, pk+1 =

(
1− 1 + 2H

k + 1

)
pk , k ≥ 2 .

The random intensity λ(ω)
d
= ξH , substituted in de�nition of the

DS PSI processes, provides that ψH(s) = ξΠ1(sζH), s ∈ IR+, has

the same covariance as for fO-U.



Limit Theorem for fO-U and fBm

Theorem 4. Let us extend the stationary ψH(t) on IR 3 t and consider

independent copies ψ
[j]
H (t), j ∈ IN, of ψH(t) which subordinate

(respectively) independent sequences (ξ)[j] of totally i.i.d random terms

{ξ[j]
i }, i ∈ Z+, j ∈ IN, with IEξ

[1]
0

= 0, IDξ
[1]
0

= 1.

Then the following convergence in a sense of convergence of �nite

dimensional distributions takes place as N →∞,

1√
N

N∑
j=1

ψ
[j]
H (t)⇒ UH(t) , t ∈ IR ;

1√
N

N∑
j=1

sHψ
[j]
H (log s)⇒WH(s) , s ∈ IR+ .

Proof of Theorem 4 directly follows from the Central Limit Theorem for

vectors with the identical covariance.



Characteristics of the distribution of the random intensity which generates fBm

For analysis of the distribution ζH let us introduce the following random variable ζ,

taking values on {0, 1, 2, . . .},

P(ζ = 0) = 2H ,

P(ζ = 1) =
2H(1− 2H)

2!
,

. . . = . . . ,

P(ζ = k) =
2H(1− 2H)(2− 2H) . . . (k − 2H)

(k + 1)!
,

. . . = . . . .

Obviously, the distribution of ζ + (1− H) equals (in Law) to a conditional distribution

of ζH provided that (ζH 6= H).

After not di�cult calculations we obtain a distribution function for ξ in the following

explicit form

P(ξ ≤ n) = 1−
( n + 1

n + 1− 2H

)
, n ∈ IN ,

and the asymptotic of its tail

P(ξ ≥ n) ∼
n−2H

Γ(1− 2H)
, n→∞ .
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