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Introduction

Framework: We consider a one-dimensional random walk in
i.i.d. random environment (RWRE) with a parametric
distribution.

Result: Based on a single observation of the path, we
provide a maximum likelihood estimation procedure for the
law of the environment.
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Random environment on Z

> w = {wx}xez i.i.d. with wy €]0,1[ and wy ~ u,
» P = %% law on ]0,1[% of w and E expectation
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Framework

Random environment on Z

> w = {wx}xez i.i.d. with wy €]0,1[ and wy ~ u,
» P = %% law on ]0,1[% of w and E expectation

Markov process conditional on the environment

For fixed w, let X = {X;}+cn be the Markov chain on Z
starting at Xp = 0 and with transitions

_ oy owx ify=x+1
P“(Xf“_y’xt_x)_{ 1—wy ify=x—-1
P,, is the measure on the path space of X given w
(quenched law) and E,, corresponding expectation.
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Framework

Random walk in random environment (RWRE)
The (unconditional) law of X is the annealed law

P() = E(P.()) = / Pu()P(w),

with E the corresponding expectation.

Note that X is not a Markov process under P in general.



Properties of RWRE

Consider the "left/right” ratio

1—
Px = wx, x €L
Wx

Solomon(1975) has proved the classification:

Recurrent case
If E(log po) =0, then

—00 = I|m met < limsup X; = +o0,

t—o0

and X; is null-recurrent.

P-as.
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Transient case
if E(log po) < 0, then

lim X; = +o0, P-as.
t—o00

Moreover, if T, = inf{t € N : X; = n}, then
» Ballistic case: if E(pp) < 1, then T,/n — ¢ P-ass.
when n — oo.

» Sub-ballistic case: If E(pg) > 1 and E(pf) =1 for
some 0 < 1 < 1 then (in general) T, ~ n'/%
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Environment law estimation o
Estimate i from a single observation (X¢)o<¢<7 of a RWRE

path.

Assumptions

We suppose that p = pg« € {g}oco, where 6* € © is an
unknown parameter, ©@ C RY compact.
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Statistical problem

Environment law estimation
Estimate i from a single observation (X¢)o<¢<7 of a RWRE
path.

Assumptions

We suppose that p = pg« € {g}oco, where 6* € © is an
unknown parameter, ©@ C RY compact.

Example (finitely supported law)

H({aitip)) = Zpl 2 Epo= pilog
i=1 !

We write P/, P? and so on for RWRE generated by 1, and
P*, P*, ... for = 0* (the true parameter to estimate).
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Moments estimation
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Problem

O. Adelman and N. Enriquez (2004), Random walks in
random environment: what a single trajectory tells.
A nice family of estimators of moments of pg«.

Example: first steps from each site = first moment.

Drawback:
» Which moments to estimate to recover pig«?

» Only some steps are used (loss of information).



Maximum likelihood estimator

Fix a time T, a trajectory Xo 1], and let L, = L,(T) and
R« = R«(T) be the number of left and right steps from
site x. Then,

X[OT] Hw 1—wX
XEL

and

PY(Xjo,7) =B [] wf (1 —w) =
XEL

HEGwRX — Wy LX—H/ 1—aLXd,u9( ).

XEZ XEZL
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Let ¢y be the function from N2 to R given by

MLE construction

1
u(x.y) = log | 2" (1~ 2 dyn(a).
0
The criterion function 6 — ¢1(6) is defined as

(7(0) = log P(Xjo,77) Z¢0 R, Lx)
XEZ

and our estimator is

01 € Argmax (7(0).
0cO
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Aim
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MLE construction

Study the convergence of 01 to 0*.

Method: Show that ¢7(6) converges (after appropriate
normalisation) to some ¢(6) with

Argmax ¢(0) = 6*
0cO©

and apply classical M-estimation theory.

Question: where £(0) comes from?
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We take neNand T =T, =inf{t e N : X; = n}.

Note that Properties
» Only the visited sites contribute to £, (0).

» The number of visited sites x < 0 is bounded (since X
is transient to the right).

> Moreover, Ry = Ly41+1forx=0,1,...,n—1.
Hence

n—1
07,(0) = > po(Les1 + 1, Ly).
x=0



Underlying BPIRE |

Under P?, the sequence L, Ln_1, ..., Lo has the same
distribution as a BPI denoted 2y, ..., Z,, and defined by

Z

ZO =0 and Zk+1 = ngJrl,i for k > 0,
i=0

with {{ i} independent and

VmeN,  Py(&ki=m)=(1—wi)"w,

MLE for RWRE
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Branching process



Underlying BPIRE I

Under P?, {Z,} is an irreducible positive recurrent
homogeneous Markov chain with the transition kernel

Qo(x,y) = <X M y) /01 a1 — a)’dug(a).

X

Consequence
1 ln—l
1. (0) ~ — Zk+1,Z der P*
- 7.(0) n;cbe( k +1,Zkt1) under

and the right-hand side is (up to constants) the likelihood of
a Markov process.

It follows that ¢g(Zx + 1, Zx+1) satisfies a law of large
numbers.

MLE for RWRE

Comets et al.

Branching process
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We deduce that ¢1,(6)/n converges in P*-probability to a . |
omets et al.
deterministic limit ¢(6):

(o) = E*%(Zo +1, 21)

Ballistic case
Zx has a finite first order moment.

Branching process

Sub-ballistic case
We fix 6y € © and replace ¢1,(0) with

T
L

l1,(0)=LT1,(00) ~ > (P0(Zk + 1, Zky1) — b0, (Zk + 1, Zk41))
0

=
|

and assume that ¢y — ¢y, is uniformly integrable (true in
most cases).

Using the almost linear nature of ¢y, we prove that £(6) is
finite, with a maximum at 0*.



Results: consistency, asymptotic normality and
efficiency

The standard M-estimators theory then applies. Under
appropriate (classical) assumptions, in the transient case, we
establish that MLE satisfies

» Consistency: lim,_ 1 GATH =0*, P*as.
» Asymptotic normality:
Vin(fr, = 07) P 9N (0, 2,0,
» Efficiency: Xy« is the Fisher information matrix.

Hence the rate of convergence is of the order /T in the
ballistic case, and T*/2 in the sub-ballistic case (k < 1).

MLE for RWRE
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Results
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Recurrent case
We consider the distributions of the form

(a,p) — Z pl aj

and assume that the true parameter 0* = (a*, p*) belongs to
a compact © C (0,1)?9 satisfying

Comets et al.

Assumptions

Assumption (ldentifiability)
For any 6 = (a,p) in ©,

O<ar<a<...<ag<1

Assumption (Recurrent environment)

d
1—
E*po =Y _ pflog
i=1



Example (Temkin)

Let

1
e = 553"‘

1
5(51_3.

Here, the unknown parameter is a € © C (0,1/2).

Energy landscape

Trajectory
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An important property of recurrent RWRE is localization:
the RE creates traps where the walk spends much time.

A useful trap visualization is the potential landscape V
where V = {V(x) : x € Z} is defined by

Properties

V(x) = Z;:(g) log py —logpo if x >0
= y—xt1108 py if x <0

The environment {wy} can be recovered from its potential:

_ exp(~V(x)
exp(—V(x)) + exp(—V(x — 1))




Main valleys

V(x)
A bn
V Cn
X
log n+ +/log n
Figure :

cn=min{x >0 : V(x) — ming<y<x V(y) > log n + (log n)*/?},
by =min{x >0 : V(x) = mino<y<c, V(y)}.
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Basic localization properties of the RW are known since the
works of Sinai (1982), Golosov (1984) and others. Namely,

» with an overwhelming probability, the (reflected) walk
Xjo,n) Stays between 0 and c,, (Arrhenius law);

Properties

» b,/ log? n and c,/ log? n converge in law to some
non-degenerate random variables;

» moreover, (X, — b,)/log?® n converges to 0 in
probability.

For MLE, we need to describe the distribution of local times
of X, — b,.



Infinite valley

Let V = {V(x) : x € Z} be a collection of random variables
distributed as V' ‘“conditioned” to stay positive. For each V/,
let W be the corresponding environment on Z.

Let v(x) = v (x) + v~ (x) be the invariant measure of the
corresponding (ergodic) Markov chain X, on Z, where

e~ V() e—V(x-1)
T ad ()= —
2) ez V@ 2) ez VP
Then Wy = v (x)/v(x).

Remark
The possible values of W are those of w, though their
distributions are different (not i.i.d.)

v (x)

MLE for RWRE
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Properties



Gantert-Peres-Shi theorem MLE for RWRE
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Put v (x) = Re/n, v, (x) = Ly/n.

Theorem (Gantert-Peres-Shi, 2010)
The distributions of

{(vf(x+ bn),v, (x+ b)) : x € Z}

Properties

converge weakly to the distribution of

{(vT(x),r (x)) : x € Z}.

As a consequence, for each strongly continuous functional f
which is translation invariant, we have

W va)}) 2 F ({0 ))).

n—oo



MLE

The annealed log-likelihood £,(6) = log P?(X[g ) in our
case is given by

%Iog[ZaRx - ]

Recurrence imply Ry, Ly — o0 as n — 00, so
> the branching explodes;
> but we can apply Laplace methods.
Denote by R, the range of the walk:

R,,:{X:Eitgn, Xt:x}

Recall that |R,| = Op-«(log? n).

MLE for RWRE

Comets et al.

Construction



Log-likelihood decomposition

For any x in R, define the random integer
~ _ ~ P RX LX
i =1(a, n,x) = Argmax {ai (1-2a)) }
i

Then

ln(0) = Z (Rxlog a; + Ly log(1l — &)) + Z log p;

XEZ XeRn
a; R 1— g3 Lx pi
sxee|1+ X () (522) 2
XERA iz \9 i pi

— My + Kn+ ra = O(n) + Op-(Iog? n) + op- (log? n)

MLE for RWRE
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Construction
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We define a MLE as

~

0, = (an, Pn) = Argmax £,(0),
(a,p)e®

and a (pseudo) MLE (a,,p,) as

a, = Argmax M,(a), e
aco,

Pn = ArgmaxK,(an,p).
p
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We define a MLE as

~

0, = (an, Pn) = Argmax ¢,(6),
(a,p)ed

and a (pseudo) MLE (a,,p,) as

a, = Argmax M,(a), SoHRIETER
aco,

Pn = ArgmaxK,(an,p).
p

Theorem

Both the the MPL estimator (a,,p,) and ML estimator
(@n, Pn) converge in P*-probability to the true parameter
value 0*.



Cross-entropy MLE for RWRE
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Recall the properties of the cross-entropy H(p, q) of two
(finitely supported) probability measures:

H(p,q) = —Eplogq=—> pilogg;

H(p) = H(p,p) < H(p,q) if p#q
In particular, for 0 < p,g < 1

mC?x{pIog q+(1—p)log(l—q)}

=plogp+ (1 — p)log(l— p)



Support estimation T

Comets et al.
Recall that v/F(x) = Ry/n, v, = Ly/nand @ =v* /v. So

n_anax{y x)log aj + v, (x )Iog(l—a;)}

XEZ

and GPS theorem yields

Construction

M
T M@ )
n n—oo
= Z v(x) max {wy log a; + (1 — wx) log(1 — a;)}
1
XEZ

= —Z maxH (Wx, aj)

XEZL
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Using wy € {a}'}, it's easily seen that for a # a*,

M(a) < M(@*) = =) " v(x)H (@)

XEZL

Finally,

Mn *\ Mn Construction
(%) = Mn(a) taw , y1e2v) — pa) > 0

n n—o0
whence it can be deduced that

a *

Argmax Mp(a) =a, — a™.
aco



Probability estimation

Recall the definition of pj:

d .
R
Pn = Argmax g log p; = Argmax g [Rn(i) log pi,
XERn p i=1 |Rn|

where

? = Argmax {Ry log(a,); + Lx log(1 — (a5)i)}

and Rp(i) ={x€R, : T=1i}.

MLE for RWRE
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Construction
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Recall the definition of pj:

d .
R
Pn = Argmax g log p; = Argmax g [Rn(i) log pi,
XERn p i=1 |Rn|

where
? = Argmax {Ry log(a,); + Lx log(1 — (a5)i)}
and Rp(i) ={x€R, : T=1i}.

By the law of large numbers, Ry/(Rx + Lx) — wx, hence
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Probability estimation MLE for RWRE
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Recall the definition of pj:

d .
R
Pn = Argmax g log p; = Argmax g [Rn(i) log pi,
XERn p i=1 |Rn|

where

Construction

? = Argmax {Ry log(a,); + Lx log(1 — (a5)i)}
and Rp(i) ={x€R, : T=1i}.

By the law of large numbers, Ry/(Rx + Lx) — wx, hence
wx = ay for a~ a* if nis large enough.

Since a, — a*, we get |Ry(i)| = #{x € Rp : wx =a’},
whence [R,(:)|/|Rn| = Pn — P*.
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Example (Temkin)

0.40 0.45
I I

0.35
I

3 T T - - — _ - - _
K | == == 6 e R e = o Bt B e
34 Numerical simulations
S ;
8 :
o :
0 :
g !
s :
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Figure : Boxplots of our estimator (white) and Adelman and
Enriquez estimator (grey). The true value of 6* is 0.3.
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» P. Andreoletti, D. Loukianova, C. Matias (2015):
Hidden Markov model for parameter estimation of a
random walk in a Markov environment.

» R. Diel, M. Lerasle (2016): Non parametric estimation
for random walks in random environment.

Extensions
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