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Plan of the talk

We remind the definition of maxisets in nonparametric estimation.
The assignment of maxisets of linear procedures will be provided
(Kerkacharian and Picard (1992) and Rivoirard (2004)).

We introduce the notion of maxiset for the problems of
nonparametric hypothesis testing.

The maxisets of the most widespread nonparametric test statistics
will be established: sum of squares of estimators of Fourier
coefficients, L2-norms of kernel estimators, χ2-tests, Kramer- von
Mises tests.

The asymptotically minimax tests and estimators on maxisets are
established (earlier for such functional sets the results were known
only for wavelet bases).
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Model

dYn(t) = f (t)dt +
σ√
n
dw(t), t ∈ (0, 1), σ > 0 (1)
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Maxisets. Nonparametric Estimation

Estimator f̂n has minimax rate of convergence n−r on the set V if

C1n
−2r ≤ sup

f ∈V
E ||f̂n − f ||2 ≤ C2n

−2r (2)

The set V is called n−r -maxiset for estimator f̂n if the following
statement holds.

The estimator has minimax rate of convergence n−r on the set U
iff U ⊂ λV for some λ > 0.
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Maxisets of Linear Procedures

Kerkacharian and Picard (1992) showed that balls
Bs

2∞(P0) = H(s,P0) in Besov space Bs
2∞ with r = s

1+2s are
n−r -maxisets for kernel and projection estimators.

∫
(f (l)(x + t) − f (l)(x))2dx ≤ L|t|2(s−l)

where l = [s].
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For the proof Kerkacharian and Picard (1992) have implemented
wavelet technique. For the wavelet basis the balls in Besov spaces
Bs

2∞ have the following assignment

Bs
2∞(P0) =



f : f =

∞∑

k=1

2k∑

j=1

θkjϕkj , sup
λ>0

22λs
∞∑

k>λ

2k∑

j=1

θ2
kj ≤ P0



 .
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Rivoirard (2004) showed that for linear projection estimators
satisfying some weak assumptions the maxisets are described in
following form

H(s,P0) = Bs
2∞(P0) =



f : f =

∞∑

j=1

θjϕj , sup
λ>0

λ2s
∑

j>λ

θ2
j < P0



 .

He studied projection estimators building on arbitrary orthogonal
systems of functions. For wide class of orthogonal systems of
functions the sets Bs

2∞(P0) are balls in Besov spaces Bs
2∞.
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Maxisets in nonparametric hypothesis testing

dYn(t) = f (t)dt +
σ√
n
dw(t), t ∈ (0, 1), σ > 0 (3)

The problem is to test the hypothesis

H0 : f (x) = 0, x ∈ (0, 1)

versus nonparametric alternatives

Hn : f ∈ Vn = Vn(P0) = {f : ||f || ≥ cn−r , f ∈ P0U}
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For any test Kn = Kn(X1, . . . , Xn) denote α(Kn) its type I error
probability and β(Kn, f ) its type II error probability for the
alternative f ∈ L2(0, 1). Denote

β(Kn, Vn) = sup{β(Kn, f ), f ∈ Vn}.

We say that, for the test statistics Tn(Yn), the problem of signal
detection is n−r -distinguishable on the set P0U if there is sequence
of tests Kn generated Tn(Yn) such that

lim sup
n→∞

(α(Kn) + β(Kn, Vn)) < 1 (4)
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Desirable definition of maxisets and maxispaces

We we want to find the functional Banach space L ⊂ L2(0, 1) such
that

problem of signal detection is n−r -distinguishable on the ball in L

For any f /∈ L, f ∈ L2(0, 1), there are functions f1n, . . . , fknn ∈ L
such that

||f −
kn∑

i=1

fin|| ≥ cn−r

and

β

(
Kn, f −

kn∑

i=1

fin

)
→ 1 − α, α(Kn) = α (5)

(the right-hand side of (??) may be greater then 1 − α. We shall
consider the worst case.)

L contains the functions of the largest possible smoothness for this
setup.

If we could find such a linear space L we call L maxispace and a
ball in L –maxiset.
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Empirical Discussion

Let us discuss the content of the first two points of this definition.

Let f /∈ L. Then there are functions f1n, . . . , fknn ∈ L such that

||f −
kn∑

i=1

fin|| ≥ cn−r

and

β

(
Kn, f −

kn∑

i=1

fin

)
→ 1 − α, α(Kn) = α (6)

However, if fin ∈ Vn(Pin), Pin → ∞ then β(Kn, fin) may also tends
to 1 − α. Thus, if we take f = 0 and implement such a definition,
we get that f = 0 /∈ L.
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Conclusion

I see two ways of solution of this problem.

i. to prove that

β(Kn, f −
kn∑

i=1

fin) → 1 − α

faster then
β(Kn, fin) → 1 − α

ii. Introduce some limitations on functions fin

We shall consider more simple ii. We suppose that functions fin
should belong to specially defined finite dimensional spaces Πi .
These spaces are constructed by unit ball U of maxispace L.
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Third point of definition

We can take arbitrary sequence of unsmooth functions and search
for the maxispace L containing these functions. Thus the maxiset
problem is ambiguously defined without the last condition.
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Preliminary definition and notation

Let L ⊂ L2(0, 1) be Banach space with norm || · ||L and let
U = {x : ||x ||L ≤ 1, x ∈ L}, be the unit ball in L.

Denote d1 = max{||x ||, x ∈ U} and denote e1 vector e1 ∈ U such
that ||e1|| = d1. Roughly speaking, vector ei is vector of U on
which i-width attains their value.
The further definition has inductive character. For i = 2, 3, . . .
denote di = max{||x ||, x ∈ U, < x , ej >= 0, 1 ≤ j < i}. Define
vector ei such that ||ei || = di , ei ∈ U, < ei , ek >= 0 for
k = 1, . . . , i − 1.

Denote Πi linear space generated vectors e1, . . . , ei . For any
x ∈ L2(0, 1) denote xΠi

the projection of vector x on subspace Πi

and x̃i = x − xΠi
. Such a definition allows us to study the

behaviour of ”the tail” of the vector x .
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Formal maxiset definition

We say that L is maxispace and µU, µ > 0 is maxiset for test
statistics Tn generating sequence of tests Kn,
α(Kn) = α(1 + o(1)), 0 < α < 1, if there holds

lim sup
n→∞

(α(Kn) + β(Kn, Vn(µ)) < 1 (7)

and for any x /∈ L, x ∈ L2(0, 1), there are sequences in, jin such that
||x̃in || > cj−r

in
and

lim sup
n→∞

(α(Kin) + β(Kin , x̃in)) ≥ 1 (8)
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Remarks

Suppose that functions e1, e2, . . . are sufficiently smooth. Then,
considering the functions x̃i = x − xΠi

we ”in some sense delete a
smooth part of function x and study the behaviour of remaining
oscillating part.”

In definition of maxispace we associate with each x ∈ L2(0, 1)
vectors x̃i having small norms and cover by our consideration all
space L2(0, 1)

In all further setups we show that the arising maxispaces are Besov
spaces Bs

2∞. For quadratic tests we have more general situation.
The assignment of maxispaces in some orthonormal basis coincide
with the assignment in trigonometric basis of Besov spaces Bs

2∞.
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Maxispaces for quadratic test statistics

We consider a problem of signal detection on a sequence space.
We observe

yj = θj +
σ√
n
ξj , 1 ≤ j < ∞ (9)

where yj =
∫

ϕjdYn(t), θj =< f , ϕj >, ξj =
∫

ϕjdw(t).

The problem is to test the hypothesis H0 : f = 0 versus alternative
Hn : f ∈ Vn.

The test statistics are the quadratic forms

Tn(Yn) =
∞∑

j=1

κjny
2
j − σ2n−1

∞∑

j=1

κ2
jn

with some coefficients κ2
jn > 0
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Since the talk contains a lot of results Theorem will be provided
only for the test statistics having the following form

Tn(Yn) =
kn∑

j=1

y2
j − σ2n−1kn
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Theorem

Denote s = r
2−4r . Then r = 2s

4s+1 .

The space Bs
2∞ is maxispace for the test statistics Tn(Yn) with

kn ≍ n2−4r = n
2

1+4s .
Here

H(s,P0) = Bs
2∞(P0) =



f : f =

∞∑

j=1

θjϕj , sup
λ>0

λ2s
∑

j>λ

θ2
j < P0



 .
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Kernel-based tests

We consider the problem of signal detection on a circle.
Define kernel estimator

f̂n(t) =
1

hn

∫ ∞

−∞
K

(
t − u

hn

)
dYn, t ∈ (0, 1)

where hn is a sequence of positive numbers, hn → 0 as n → 0.
The kernel K is bounded function such that the support of K is
contained in [−1, 1], K (t) = K (−t), t ∈ R1 and

∫
K (t)dt = 1.

We consider the kernel based tests with test statistics

Tn(Yn) = n−1h
1/2
n σ−1(||f̂n||2 − (nhn)

−1||K ||2)

where

σ2 =

∫ (∫
K (t − s)K (s)ds

)2

dt.



Theorem

For the kernel-based tests with hn ≍ n4r−2 = n
−2

1+4s Besov spaces
Bs

2∞ with s = r
2−4r are n−r -maxispaces. Here r = 2s

4s+1



Chi-squared tests

Let X1, . . . , Xn be i.i.d.r.v.’s with c.d.f. F (x), x ∈ (0, 1). Let c.d.f.
F (x) has a density f (x) = dF (x)/dx , x ∈ (0, 1). Suppose that
f ∈ L2(0, 1) with the norm

||f || =

(∫ 1

0
f 2(x)dx

)1/2

< ∞.

We explore the problem of testing hypothesis

H0 : f (x) = 1, x ∈ (0, 1)

versus nonparametric alternatives

Hn : f ∈ Vn = Vn(P0) = {f : ||f − 1|| ≥ cn−r , f ∈ U(P0)}
where U(P0) is a ball in some functional space L ⊂ L2(0, 1). Here

r , c , c > 0, 0 < r < 1/2, are constants and P
1/2
0 is the radius of a

ball U(P0).
For this setup the same definition of maxiset and maxispace can be
implemented.



Definition of χ2-tests

Let F̂ (x) be empirical c.d.f. of X1, . . . , Xn.
Denote p̂in = F̂ ((i + 1)/kn) − F̂ (i/kn), 1 ≤ i ≤ kn.
Test statistics of χ2-tests equal

Tn(F̂n) = knn
kn∑

i=1

(p̂in − 1/kn)
2



Theorem

For the χ2-tests with kn ≍ n2−4r = n
2

1+4s Besov spaces Bs
2∞ with

s = r
2−4r are n−r -maxispaces. Here r = 2s

4s+1



Discussion

Besov spaces Bs
2∞ does not contain stepwise functions. It seems

strange. The definition of χ2 - tests is based on indicator
functions. Thus χ2 - tests should detect well distribution functions
with stepwise densities.
Let us consider χ2 - test with kn = 2ln . Then χ2 - test statistics
admit representation

Tn(F̂n) = knn
ln∑

i=1

2i∑

j=1

β̂2
ij

with

β̂ij =
1

n

n∑

m=1

ϕij(Xm)

where ϕij are functions of Haar orthogonal system.



Implementing the same reasoning as in the case quadratic test
statistics we get that χ2 - test statistics have maxisets

B̄s
2∞(P0) =



f : f = 1 +

∞∑

k=1

2k∑

j=1

βkjϕkj , sup
λ>0

22λs
∞∑

k>λ

2k∑

j=1

β2
kj ≤ P0



 .

This statement is true as well.
Suppose function f is sufficiently smooth and βkj are Fourier
coefficients of f for Haar orthogonal system. Since
βkj = 2−k/2 df

dx (j2−k)(1 + o(1)) then

2k∑

j=1

β2
kj = C2−k/2

∫ (
df

dx

)2

dx(1 + o(1))

Thus we saw that f does not belong to Bs
2∞ for such a setup.

Kernel-based tests also detect stepwise densities well. However
these densities also does not belong corresponding maxispace.



Maxispaces for Cramer-von Mises tests

We shall consider Cramer- von Mises test statistics as functionals
T (F̂n − F0) depending on empirical distribution function F̂n

T 2
ω(F̂n − F0) =

∫ 1

0
(F̂n(x) − F0(x))2dF0(x).



Theorem

The space Bs
2∞ with s = 2r

1−2r is n−r -maxispace for Kramer-von
Mises test statistics. Here r = s

2+2s .



Asymptotically minimax estimators on maxisets

. For wavelet setup asymptotically minimax estimators for are
wellknown Bs

2∞ (see I.Johnstone. Gaussian Estimation: Sequence
and Wavelet Models Ch 14 to be published)

Bs
2∞(P0) ==



f : f =

∞∑

k=1

2k∑

j=1

θkjϕkj , sup
k

22ks
2k∑

j=1

θ2
kj ≤ P0



 .

Asymptotically minimax tests one can find in Ingster and Suslina
(Problems of Information Transmition (1998) v.34).



Minimax estimators on maxisets. Trigonometric system of
functions

H(s,P0) = Bs
2∞(P0) =



f : f =

∞∑

j=1

θjϕj , sup
λ>0

λ2s
∑

j>λ

θ2
j < P0



 .



Minimax estimators on maxisets. Linear estimators

. The results will be provided in terms of sequence model. Let we
observe a random sequence y = {yj}∞

j=1 of observations

yj = xj + ϵσjξj , ϵ > 0, 1 ≤ j < ∞

where σj > 0 are known constants and ξj , 1 ≤ j < ∞, are
independent Gaussian random variables Eξj = 0 and Eξ2

j = 1.
The problem is to estimate the parameter x = {xj}∞

j=1.
Denote σ = {σj}∞

j=1 and ξ = {ξj}∞
j=1.

For the estimation with fixed ϵ > 0 we suppose a priori information
is provided in the following form

x ∈ B = B(a, P0) =



x = {xi}∞

i=1 : sup
k

a−1
k

∞∑

j=k

x2
j ≤ P0



 (1)

where a = {ak}∞
k=1 and ak > 0 is decreasing sequence.



We say that linear estimator x̂ϵ = {x̂ϵj}∞
j=1 is minimax in the class

of linear estimators
x̂ϵλ = {x̂ϵjλj

}∞
j=1, x̂ϵjλj

= λjyj , λj ∈ R1, 1 ≤ j < ∞, λ = {λj}∞
j=1, if

sup
x∈B

Ex ||x̂ϵ − x ||2 = inf
λ

sup
x∈B

Ex ||x̂ϵλ − x ||2. (2)

The minimax estimator in the class of linear estimators will be
established if the following assumptions hold.
A1 There is c > 0 such that c < σ2

j < ∞ for all j .
A2. For all j > 1

σ2
j (aj−1 − aj)

σ2
j−1(aj − aj+1)

> 1. (3)



Theorem

Assume A1,A2. Then the linear estimator θ̂λ with

λj =
P0(aj − aj+1)

P0(aj − aj+1) + ϵ2σ2
j

. (4)

is minimax on the set of all linear estimators.
The minimax risk equals

Rlϵ = ϵ2
∞∑

j=1

P0σ
2
j (aj − aj−1)

P0(aj − aj−1) + ϵ2σ2
j

. (5)



Asymptotically minimax estimators on maxisets.

We say that the estimator x̂ϵ is asymptotically minimax if

sup
x∈Br

2∞(P0)
Ex ||x̂ϵ −x ||2 = inf

x̃ϵ∈Ψ
sup

x∈Br
2∞(P0)

Ex ||x̃ϵ −x ||2(1+o(1)) (6)

as ϵ → 0. Here Ψ is the set of all estimators.

we replace A2 more simple assumption.
B1. For all j > j0

σ2
j j

2s+1

σ2
j−1(j − 1)2s+1

> 1. (7)



Theorem

Assume A1,B1. Then the linear estimator θ̂λ with

θ̂λ,j =
2rP0j

−2s−1

2sP0j−2s−1 + ϵ2σ2
j

yj . (8)

is asymptotically minimax on the set of all estimators.
The asymptotically minimax risk equals

Rϵ = ϵ2
∞∑

j=1

2rP0j
−2s−1σ2

j

2sP0j−2s−1 + ϵ2σ2
j

(1 + o(1)). (9)



Remark

The estimator θ̂λ is maximum penalized likelihood estimator with
quadratic penalty function

1/2P−1
0

∞∑

j=1

j2s+1x2
j

This is the standard penalty function for spline estimators. Thus
spline estimators are asymptotically minimax on Besov balls
B r

2∞(P0).

This estimator can be also considered as the estimator of Tikhonov
regularization algorithm with corresponding regularization
addendum.



Bayes approach

The asymptotically minimax estimator and Bayes estimator with a
priory Gaussian measure θj = N(0, 2rP0j

−2r−1) coincides. Here
θj , 1 ≤ j < ∞ are i.r.v.’s. The risks coincides as well.

If we consider asymptotically minimax estimation on ellipsoid

θ ∈



θ :

∞∑

j=1

j2βθ2
j ≤ P0



 , bj → ∞

then asymptotically minimax risk rmϵ have the same order as Bayes
risk for a priori Gaussian probability measure with
θj = N(0, j−2β−1) (see Ermakov Inverse Problems (1990)).

For the talk setup we have the sharp equality of asymptotically
minimax and Bayes risks.

Since variances σ2
j are not the constant the results are transfered

automatically on the linear ill-posed inverse problems with random



Asymptotically minimax tests for maxisets

Our goal is to test the hypothesis

H0 : f (t) = 0, t ∈ (0, 1)

versus the alternative

Hϵ : ||f ||2 > ρϵ > 0,

if a priori information is provided that

θ ∈ B r
2∞(P0) =



f : f (t) =

∞∑

j=1

θjϕj(t), k−2r
∞∑

j=k

θ2
j ≤ P0, 1 ≤ k < ∞





with P0 > 0. Here ϕj , 1 ≤ j < ∞, is orthonormal system of
functions.



For wide class of orthonormal systems of functions ϕj , 1 ≤ j < ∞
the space



θ : θ(t) =

∞∑

j=1

θjϕj(t), k−2r
∞∑

j=k

θ2
j < ∞, t ∈ (0, 1), 1 ≤ k < ∞





is Besov space B r
2∞



Asymptotically minimax test statistics

Define k = kϵ and κ2 = κ2
ϵ as a solution of two equations

2rk2r+1
ϵ κ2

ϵ = P0 (10)

and
kϵκ

2
ϵ + k−2r

ϵ P0 = ρϵ. (11)

Denote κ2
j = κ2

ϵ , for 1 ≤ j ≤ kϵ and κ2
j = P0(2r)

−1j−2r−1, for
j > kϵ.
Define test statistics

T a
ϵ (Yϵ) = ϵ−4

∞∑

j=1

κ2
j y

2
j .

Aϵ = ϵ−4
∞∑

j=1

κ4
j .



For type I error probabilities α, 0 < α < 1, define critical regions

Sa
ϵ == {y : (T a

ϵ (y) − ϵ−2ρϵ)(2Aϵ)
−1/2 > xα}

with xα defined by equation

α = 1 − Φ(xα) = (2π)−1/2

∫ ∞

xα

exp{−t2/2} dt.



Theorem

Let
0 < lim inf

ϵ→0
Aϵ ≤< lim sup

ϵ→0
Aϵ < ∞. (12)

Then the tests La
ϵ with critical regions Sa

ϵ are asymptotically
minimax with α(La

ϵ) = α(1 + o(1)) and

βϵ(L
a
ϵ) = Φ(xα − (Aϵ/2)1/2)(1 + o(1)) (13)

as ϵ → 0.

Example. Let ρϵ = Rϵ
8β

4β+1 . Then

Aϵ =

(
P0

2r

)1/2r 4r + 2

4r + 1

(
R

2r + 1

) 4r−1
2r

.
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