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Plan of today's talk

@ Motivation for this talk

o Initial Bayes type estimators of both drift and volatility parameters
for small diffusion processes based on reduced data with sample size ng (< n)
in the case when ¢ — 0 and ny — oo.

@ hybrid estimator with the initial Bayes type estimator for small diffusion
processes in the case when %ﬁ =0O(1).

@ Example and simulation results



1. Introduction
We treat a d-dimensional small diffusion process defined by the following
stochastic differential equation

{ dXt = CL(Xt, Oé)dt + eb(Xt,B)dwt, t (S [0771]7 € c (0, 1], (1)
Xo = zo,

where

e and T are known constants, xg is a deterministic initial condition,

w is an r-dimensional standard Wiener process,

0= (a,B) € © =0, x Og with ©, and O3 being compact convex subsets of R?
and RY, respectively,

a:R'x 0, > RYand b: R x O3 - RI®@R", and §* = (a*, %) € Int(O) is

the true value of 0.

The data are discrete observations X,, = (X, )o<i<n With t; = thy, h, = T/n.
We will consider the case when € — 0, n — oo, 6\% =0(1), and

there exists v € (0, 1] satisfying that e(y/n)” = O(1).




History

A family of small diffusion processes defined by (1) is an important class of dynamical
systems with small perturbations. For dynamical systems with small perturbations, see
Azencott (1982) and Freidlin and Wentzell (1998).

Statistical inference for continuously observed small diffusion processes is well developed
by Kutoyants (1984, 1994), Yoshida (1992a, 2003), lacus (2000), lacus and Kutoyants
(2001), Uchida and Yoshida (2004a), Brouste et. al. (2014) and references therein.

Furthermore, there are a number of researches on parametric inference for discretely
observed small diffusion processes, see Genon-Catalot (1990), Laredo (1990), Sgrensen
(2000, 2012), Sgrensen and Uchida (2003), Uchida (2003, 2004, 2006, 2008), Gloter and
Sgrensen (2009), Guy et. al. (2014) and Nomura and Uchida (2016).

For applications of small diffusion processes to mathematical finance and mathematical
biology, see Yoshida (1992b), Kunitomo and Takahashi (2001), Takahashi and Yoshida
(2004), Uchida and Yoshida (2004b), Fuchs (2013), Guy et. al. (2014, 2015) and
references therein.



In order to explain the goal of this paper, we first review the joint estimation of both drift and
volatility parameters for discretely observed small diffusion processes.

Joint estimation
Set A®2 = AA* and C[A] = tr(CA*) for matrices A and C' of the same size, where x means

the transpose. Let B(z, 8) = bb*(z,8), AX; = X¢, — X, 1. ai—1(e) = a(X¢;_,,a) and
B;_1(B) = B(X¢t;,_,,B). The quasi-log likelihood function is defined as

Uen(e,8) = —% 2; {togdet Bi-1(8) + (2hn) " B (8) [(AXi — hnai—1(2))?] }.
The joint maximum likelihood (ML) type estimators 4'”) and 3" are defined as
Ue n(OLEJ'n),y Aé,J'n?) - sup Ue,n(a7 ﬁ)
a€Bq,B€043
S¢rensen and Uchida (2003) showed that under some regularity conditions, as € — 0, n — oo
and \F =0(1),
(71 @5 — o), VR(BER = B7)) 5 (¢1yGa) ~ N (0,1(6%)7H), 2

d . C . . .
where = means convergence in distribution, Npt4(0,1(0*)~1) is the normal random variable
with mean zero and the covariance matrix I(0*)~! and I(6*) is the asymptotic Fisher
information matrix, see Section 2 below.



Adaptive estimation

From the viewpoint of numerical analysis, the joint ML type estimator is unstable when the dimension of © is
large. For that reason, we consider the adaptive ML type estimators. In the same way as Uchida and Yoshida
(2012) for ergodic diffusion models, the quasi-log likelihood functions are defined as

Ve = WZ{IOgdetBHwH(e ha) T B (8) [(AX0®]
Vv (a,8) = 772 Eha) T B (B) [(AX: — hnai—i(a)®?] .

!

The adaptive ML type estimators &EE,L) and Bé’f) are defined as

VLB = sup V) (B), ®)
BEOR

V(Q)( EE;‘])’ (E)) _ Seué) V( )(a ﬁ(E)). (4)
(o3 «

Then, under some regularity conditions, as ¢ — 0, n — oo and fﬁ =o(1),

(7@ = a), va(BE) = 7)) 4 (G1y2) ~ Npsa(0,167) 7).

In the case of small diffusion process, the adaptive ML type estimators (3) and (4), which are obtained by the
same method as the case of the ergodic diffusion processes, are worse than the joint ML type estimators fii,{i

= 0(1) is needed to get the same asymptotic properties as (2).

and BE 7) since the stronger condition

1
2 m
Therefore, the aim of this talk is to propose the adaptive ML type estimator which has the same asymptotic
normality as (2) under % O(1) from the viewpoint of numerical analysis.

ol



In order to compute the adaptive ML type estimators, it is indispensable to get a suitable
initial estimator for optimization of quasi-log likelihood function.

Nomura and Uchida (2016) obtained the initial Bayes type estimator from full data of
small diffusion processes. They considered the hybrid estimator with the initial Bayes
type estimator and showed that the hybrid estimator has asymptotic normality and
convergence of moments.

However, it takes much time to compute the initial Bayes type estimator when the
sample size is large.

Kutoyants (2017) considered the multi-step ML type estimation procedure for ergodic
diffusion processes from continuous path data on [0,7]. He proposed the multi-step
estimator with the initial estimator derived from the reduced continuous path data on
[0,To] for Ty < T and showed asymptotic efficiency of the multi-step ML type estimator
as Tp — oo.

Uchida and Yoshida (2017) studied the initial Bayes type estimator based on reduced
sampled data for a discretely observed ergodic diffusion processes and they showed
asymptotic normality and convergence of moments for the adaptive ML type estimator
with the initial Bayes type estimator.



In this talk, we consider the initial Bayes type estimator based on reduced sampled data for a
discretely observed small diffusion process by applying the initial estimator with reduced data for
a ergodic diffusion process in Kutoyants (2017) and Uchida and Yoshida (2017) to the initial
Bayes type estimator for a small diffusion model from the viewpoint of numerical analysis.

The adaptive ML type estimator with the initial Bayes type estimator,
which is called the hybrid estimator with the initial Bayes type estimator,
is proposed for a small diffusion process.

Moreover, it is shown that the proposed hybrid estimator has asymptotic normality and
convergence of moments by applying the Ibragimov-Has'minskii program (1972a,b, 1981) and
the polynomial type large deviation inequality for statistical random field in Yoshida (2011) to
the case of discretely observed small diffusion processes.

Needless to say, the convergence of moments and the polynomial type large deviation inequality
of statistical random field play an important part to show the mathematical validity of
asymptotic expansions and asymptotic unbiasedness of information criteria for model selection,
see Yoshida (1992a, 1992b), Uchida and Yoshida (2001, 2004a, 2004b, 2006) and Uchida (2010).



2. Initial Bayes type estimators with reduced data and hybrid estimators

Although the data are discrete observations X,, = (X4, )o<i<n with t; = ih,, hy, = T/n,
from the viewpoint of numerical analysis, we consider

initial estimators with reduced data Y., = (X¢,)o<i<n,, where ng = [2] for ¢ > 1.

For a matrix A, we define ||A|| = tr(AA*)'/? and | - | denotes the Euclidian norm.

Let % and % be the convergence in probability and convergence in distribution,
respectively.

Let X be the solution of the ordinary differential equation corresponding to € = 0, i.e.,
dX? = a(X?,a*)dt, X9 = xo.

Let Cﬁ’l(Rd x ©;R?) denote the space of all functions f satisfying the following
conditions:

(i) f(x,0) is an R%-valued function on R? x © and is continuously differentiable with
respect to « and 0 up to order k and [, respectively.

(ii) for [n|=0,1,...,k and |v| =0,1,...,1, there exists C' > 0 such that
sup|d¥ ™ f| < C(1 + |z|)€ for all z.
)
Here, n = (n1,...,nq) and v = (v1, ..., ;) are multi-indices, [ = dim(0),
In|=ni1+-+na v|=v1+ 4w, 0" =01 ---0)%, 0; =0/0x;, i =1,....,d,
¥ =680, 5, =0/00;, 5 =1,...,1.



In this talk, we make the assumptions as follows.

[A1] (i) There exists K > 0 such that for all z,y € R?,
sup |a(z, @) — a(y, @)| + Sup 16(z, 8) — by, B)|| < K|z —yl.
s

a€BOy
(i) inl‘gdet B(z,B) > 0.
[A2] a(z,a) € CTH(R? x ©4;R?), b(z, B) € CP (R x Og; R @ R").

The quasi log-likelihood functions U} (a) and U{2)(«, B) with reduced data Y., and
the quasi log-likelihood functions Ug(g(a B) and Uéf‘,z(m B) with full data X, are defined
as follows.

1 &
Ulno(@) = g IAXi =~ hnaia(@)f,

=1

1 & ’
U2y 8) = =5 S IAX: — huaio1(@)® = (h)Bia (B)]

U8 (e, B)

5 20 BA(8) [(AX: — huaics ()],

UD(a,8) = —%Z{logdetBi_l(ﬁ) - (hn) ' BIY () [(AX: — hnaioa ()]}
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Note that under [A1]-[A2], as == = O(1), uniformly in 6 € ©,

evn
2 {USB0 Ue(l,zo ) } N Y<1)(a)
b {US) (a7, 8) = UL, (0%, 6} 5 ¥ (8),
e {U8(a,8) - U8 )} B YO (),

ho UGN, 8) - Ué,‘i%(a*,ﬂ*)} 50 (),

where
l1e [T/e 2
Y(D(a) = 75?/ |a‘(Xt07a)7a‘(X1?aa*)‘ dta
0
T/c 9
¥O6) = —5n [ IBes) - B )| ae
0
W) = g [ B0 [l e - a(X?,a*))®2] dt,
0
W@ = L[ 0 )1 B(x? M}

11



[A3] There exist positive constants Y, %@, 3 and ¥ such that for all & € ©, and

56@3,
Y<1)(a) < fx(1>|afa*|2,
Y& < —Xx?1B-8,
Y(g)(a) < fx(3)|afa*|2,
YW@ < —xWB-s

[A4] We assume that J— = O(1) as e — 0 and n — 0o, and there exists v € (0, 1]
satisfying that ¢(y/n)” = O(1). Moreover, ry < 2717y for 1,72 € (0, 1].

12



The statistical random fields H, ,, (&) and H), ., (v, B) with reduced data Y, are
given by

HE o, (0) = €7 UG, (),
1 @

WUE,W (o, B).

We assume that the prior densities 71 (a) and 72(3) are continuous and satisfy that

0 < inf m(a) < sup mi(a) < oo and 0 < inf m(B) < sup m2(B) < co.
a€Oq €Oy B€Og BEO

I . ~(1) 5(2) . )
The initial Bayes type estimators @e,ng,r, and 55(,”0” with reduced data Y,,, are defined
by

HE), (e, B) =

f@a aexp {HE}%O,H (a))} 1 (a)da

a —
€,mng,r1 ) )
f@a exp {He,no,rl (a)} w1 (a)da
vy o, Bexp {Hra (6800, B) | m2(8)d8
€,10,72 =

2 ~(1 ’
f@B exp {Hi,%o,rz (agﬂ)lovru )} m2(B)dS
The hybrid estimators é.,» and Be,n with full data X,, are defined by
Ue(,a'rz (déqn73£,2'r)m,7"2) Sup U6<,?;‘Z (OZ, ~€(,2T)L(),7"2)7
a€By

sup UL (Ge,n, B).
BEOg 13

Ue<,412 (dEJH Bﬁ,”)



Proposition 1

Let r1,r2 € (0,1]. Assume [A1]-[A4]. Then, for all M > 0, as ¢ — 0 and n — oo,

(i) sup Ep-

(it

(i) sup Ep~

€,n

(iii) sup Eg=

€,n

(iv) sup Eg=

€,

e (dg}gowl —a”)

|(V70) (Borrs — 87|

[vt6en -]

Remark 1

It follows from Proposition 1 that when r1,r2 € (0, 1), the convergence rates of the
initial Bayes type estimators 0721,10 r, and ,36(2,)10 ry are €'t and
which means that the initial Bayes type estimators do not have opt:mal rates. However,
the hybrid estimators ¢, and ﬁe n have optimal rates, € and —= L —, respectively.

oy \/L)T -, respectively,




Let

*Y (Iéj(e*))lﬁi,jﬁp 0
”“‘( 0T ) )
I}f(&*):/ (8a,a(X7, )" B(X{, 8%)0a,a(X{, a%)dt,
0
g 11T 1 S 0 o
BE) = 37 | e {57 035)57 05, B)(XP ) .

Theorem 1
Assume [A1]-[A4]. Then, as e — 0 and n — oo,

(7 (Gem = @), VAt(Bern = 7)) 5 (G1G2) ~ Npwa(0,167)7)
and
Eo- [£ (€ (Gem — a?), Va(Ben = 87)) | = EF(G1,C2)]

for all continuous functions f of at most polynomial growth.
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3. Examples and simulation results

Consider the three-dimensional diffusion process defined by
dX: = a(Xy,a)+eb(Xy, B)dWy, te€][0,1], €€ (0,1],
Xo = (1,1,1)%,

where

1 — X1 — 10sin(a1 X2 + @2 X72)
a(Xi,a) = 2 —a3Xi2— 10 sin(a4Xt2,3) ,
3 — a5 X3 — 10sin(as X7 1)

B1(2 + cos(X?3)) 0.01 0
b(Xe, B) = 0.01 B2(2 + cos(X7,)) 0
0 0 Bs(2 + COS(XE2))

Furthermore, a = (a1, a2, s, aa, as, as), and 8 = (B1, B2, B3) are unknown parameters,
parameter space is assumed to be © = [0.1, 50]°.

16



The simulations were done for T'=1, h = 107>, which means that n = 10°.
Let ¢ =10 and ng = n/10 = 10*. We set ¢ = 0.05,0.01.

The initial Bayes type estimator 65 = (ozél,)lo I ~5(,27)10,T2) with reduced data Y, is
defined by

Jon, aexp {H i (@)} m(a)da

~(1
WD = - ,
f(_) exp {He,no,rl (a)} w1 (a)da
oy o Bexp {HE (60001 B) | ma(8)dB
€,N0,T2 =

f 5 SXP {Hg)lowz (aglf)lovﬁv )}WQ(/B)d/B 7
where HE}%O,” (a) and Hg%o o (e, B) with reduced data Y, are given by
Hefng,ri (@) = €72UL, (a),

(2) _ ! (2)
He,no,rg (o, 8) = WUe,no (o, B).
It follows from Proposition 1 that
L M
sup Fg« [ e M (&iy%oyrl —a”) } < 00,
sup Fg« “(w/no)m( O, - B%) } < 00.
€,n

17



The Bayes type estimators are calculated with MpCN method proposed by Kamatani
(2014). MpCN algorithm is as follows.
@ Choose z € R% and 1 € RY.
@ Generate r from the gamma distribution with the shape parameter d/2 and the
scale parameter || z — p ||? /2.
@ Generate z* = pu+ p*/?(z — p) + (1 — p)Y/2r~/%w where w follows the standard

normal distribution.

* 2
@ Accept z* as x with probability min {17 %}. Otherwise, discard z*.

In practice, it is advisable to take the two-stage procedure.

@ Choose z € R? and uE R<%. Run MpCN algorithm. Let (x1,...,2an) be the

output.
@ Setx=xpm, p= Zﬁf:l % and run MpCN algorithm again.

In this paper, we set p = 0.8.

We used 107 and 10® Markov chains and 10° and 10° burn-in iterations for estimation of
a and 3, respectively.

18



The adaptive ML type estimator (dffn, Aﬁ,‘?n) is defined as

&541)” = arg sup Ue(,lrz(a)7
) a€EBOy
:(427)71 = arg sup Uﬁ?ﬁ(df,)nv ),
BEOGg
df)n = arg sup Ue(?fz(a»Bff)n%
’ a€EBq 7
~ 4 A 3
W, = arg sup UGS, 8).
BEOs

In order to compute the ML type estimator, we used optim() with the "L-BFGS-B”
method in the R Language.



The hybrid estimators é&.,» and Be,n with full data X,, are computed as follows.

U @en, BE) = sup U)o BED),
a€EBy

Ue<,472 (de,n,Be,n) = sup Ue(jlfz (&57”176)7
BEOZ

where &21,{ is obtained by using optim() for Ué(ln( ) with the initial Bayes type estimator

aﬁﬁlm, and 6 is given by using optim() for Ue(zn)(aglg, ) with the initial Bayes type

estimator ﬁe N0, -

For the true model, 100 independent sample paths are generated by the Euler-Maruyama
scheme, and the mean and the standard deviation (s.d.) for the estimators are computed.

Tables 1-10 and 11-20 are simulation results for ¢ = 0.01 and 0.05, respectively.
The time in each table is the computation time of estimation for one sample path.

The personal computer with Intel i7-5930K (3.5GHz base clock) was used for simulations.

20



3.1 In case that e = 0.01

Table 1: adaptive ML type estimator with the initial value being the true value

a1(3) a2 (7) a3(5) @4(2) as(4) G6(6) A1)  B2(2)  Bs(3) || time(sec.)
3.000 7.000 5.000 2.000 2.000 6.000 1.000 2.000 3.000
true | (0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000) (0.005) (0.010) (0.014) 40

Table 2: adaptive ML type estimator with the initial value being the uniform random
number on ©

. (3) a2(7)  a3(d) 64(2) as(4) 6(6) Bi(1)  B2(2)  PBs(3) || time(sec)
24149 25555 3078  23.788  3.118  26.158  3.588 4549 5.628
unif | (15.155)  (15.678) (2.877) (17.492) (1.005) (15.668) (1.247) (1.439) (1.189) 40

Table 1 shows the simulation results of the adaptive ML type estimator (&f’)n, Bff)") when the initial value is

the true value. We see from Table 1 that all estimators have good behavior.

Table 2 is the simulation results of the adaptive ML type estimator (df:?n, ﬁf:)n) with the initial value being
the uniform random number on ©. All estimators have considerable biases, which means that the optimization
fails since the initial value may be far from the true value.

As we know very well, it is quite important to choose the initial value for optimization.

21



Table 3: initial Bayes type estimator dé},{o,rl with no = 10*.

a1(3) a2(7)  a3(5)  &a(2) as(d)  &g(6) || time(hour)
3006 6989 5120 2006  3.986  6.000

ri =10 | (0064) (0.085) (0.502) (0.027)  (0.119)  (0.011) 8
2994 7003 5072 2003 3097  6.000

ri=0.7 | (0.069) (0.084) (0.323) (0.023) (0.105) (0.012) 8
3000 6997 5112  2.005 3.085 5008

ri =05 | (0052) (0.069) (0.247) (0.016)  (0.090)  (0.010) 8
2.981 7.011 5793 2.042 3997 5099

ry=0.3 | (0.048) (0.063) (0.347) (0.024) (0.091)  (0.010) 8
3437 6267 10489 2014 4198 5071

r1=0.1 | (0.160) (0.070) (0.717) (0.407)  (0.151)  (0.033) 8

Table 4: initial Bayes type estimator 1(,2,20“ with di}ﬁm,m and ng = 10*.

£1(1) B2(2) B3(3) time(hour)
0.999 2.000 3.002

r1=1.0,r =1.0 | (0.014) (0.028) (0.043) 15
0.999 2.000 3.002

ry=0.7,r, =10 | (0014) (0.028) (0.043) 15
0.999 1.999 3.002

r1 =057 =1.0 | (0.014) (0.028) (0.043) 15
0.999 2.000 3.002

ry=0.3,r, =0.6 | (0014) (0.028) (0.043) 15
0.999 2.217 3.002

ri=0.1,7, =02 | (0.014) (1.035) (0.043) 15

Tables 3-4 show the simulation results of the initial Bayes type estimator 6 = (&iylv)to-,m s Bé?}LO,TQ) when

the sample size of the reduced data no = 10* and the tuning parameters (r1,72) = (1.0, 1.0), (0.7, 1.0),
(0.5,1.0), (0.3,0.6) and (0.1,0.2).

In Table 3, the initial Bayes type estimators with r; = 1.0, 0.7, 0.5 have good behavior.

In Tables 4, most of the initial Bayes type estimators have good performance. 22



. . . N . -1 5(2
Table 5: hybrid estimator & with the initial Bayes estimator ozg,?)m,rl and 56(,7)10@

(3 ax(7)  63()  aa(@) 65  Ge(6) ]| time(sec)
2999 7.000 5027 2.001 3988 6.000

ri =107 =10 | (0.029) (0.034) (0.210) (0.014)  (0.079)  (0.008) 40
3000 6998  5.021 2.001 3990 5099

7 =0.7, 71, =1.0 | (0.045) (0.056) (0.200) (0.012) (0.086) (0.008) 40
3002 6004 5051 2002 3088 5999

ri =057 =10 | (0.031) (0.041) (0.178) (0.010) (0.076)  (0.008) 40
2997 6099 5214 2010 4004 5098

r1=0.3,r, =0.6 | (0.028) (0.036) (0.359) (0.021) (0.057)  (0.007) 40
20998  7.002  4.939 1.061 3993 5009

=01, =02 | (0.008) (0.010) (0.539) (0.591) (0.036)  (0.004) 40

Table 6: hybrid estimator /3 with &S,)Lo,rl and Bé?ﬁom

B1(1) B2(2) B3(3) time(sec.)
1.001 2.001 3.000

71 =10, =10 | (0.005) (0.010) (0.014) 40
1.001 2.001 3.000

ri=0.7, 7, =1.0 | (0.005) (0.010) (0.014) 40
1.001 2.000 3.000

71 =05, =10 | (0.005) (0.010) (0.014) 40
1.001 2.002 3.000

r1=0.3, 72 =0.6 | (0.005) (0.011) (0.014) 40
1.000 2.124 3.000

ri=0.1,7r2 =02 | (0.005) (0.522) (0.014) 40

Tables 5-6 show the results of the hybrid estimators én = (Ge,n, Bem,) with the initial B. E.s in Tables 3-4.
In Tables 5-6, the hybrid estimators of « with the tuning parameters (ry,r2) = (1.0, 1.0), (0.7,1.0),

(0.5, 1.0) have good behavior and

the hybrid estimators of 3 with the tuning parameters (r1,72) = (1.0, 1.0), (0.7,1.0), (0.5,1.0), (0.3,0.6)
are unbiased. 23



Next, in order to compare with the hybrid estimator (G, Bn) based on the initial Bayes type
estimator from reduced data, we consider the following two kinds of initial estimators

A(2 A(2
(@@, .85, ) and (aggo,ﬁg;m). Let ng = 10%.

Method G (Grid points method). For 18° points Gg,m (m = 1,...,18%) with 18 equally spaced
A (1 )

points on each axis on [0.1,50]%, the initial estimator GGy, 18 defined as

Ug},zo( (1> )7max{U€ 1o (@0,1), Ue(no( 0,2), - ..,Ue(ﬂlyio(aoylgﬁ)}.

Next, for 1303 points Bo,m (m = 1,...,130%) with 130 equally spaced points on each axis on
[0.1,50]3, the initial estimator Bg)n is defined as

U6 BGng) = max {US) (65,0 Bo), U (68,0 Bo.2) - UL (68, Bonson) }

24



Method U (Uniform r.n. + optim() method). Using 76 uniform random numbers ag,m
(m=1,...,7%) on [0.1,50]%, we compute

&9) = arg sup Us(,l,zo (a)

by means of optim() with each initial value ag,r,. The initial estimator dgjnno is defined as

UGl (@4)),) = max { U8, (a8), Ul @8?), ..., vl afeh } -
Next, using 343 uniform random numbers 8o, (m =1,...,34%) on [0.1,50]3, we compute

B —aufgs%pUe< R GIAC)

Ay, ,no
by means of optim() with each initial value 8y . The initial estimator B[(J2'>no is defined as

2 1 A(2 2 1 2 2 1 5(2 2 1 5(2
USL (@ Bing) = max {US (a(7, . B, USD (607000 B8 UEL (640, B

)}

25



Let K = G,U. The hybrid estimator (afjiﬂ _,(ffz) is computed as follows.

a, = arg sup US) (e, B2)),
a€EBOy

Bi = arg sup USN(@y”), B),
’ BEOg

(1) (1)

., is obtained by using optim() for UL (@) with the initial estimator ak o

and ﬂk . is given by using optim() for UE(272 (a,&ll, ) with the initial estimator ﬂk o

where &,

Let @5 = (éun, Bn) with the initial Bayes type estimator Op. Let O = (oz((?)n, (04)71) with
O = (A )y Be ) and By = (agy),, Bi,) with Oy = (4}, Bin,)-

26



Table 7: initial estimators &g = Geng,r (1 = 0.7), &c (18° + 130 lattice points), au
(7° + 34% random numbers) with ng = 10

a1(3) a2(7)  a3(5)  &a(2)  as(d)  &g(6) || time(hour)
2094  7.004 5072  2.003 3997 5999
ap | (0.068) (0.084) (0.326) (0.023) (0.105)  (0.012) 8
0010 11121 16677 2787 4149 5566
ac (0) (1.395) (0) 12
3698 6010 6565  2.901 3850  5.838
au | (3013) (2.566) (3.316) (5.428) (0.822)  (1.266) 15

Table 8: initial estimators BB = Beng.rm (11 =0.7,72 = 1.0), Bc (18° + 130 lattice
points), By (7° + 34 random numbers) with ng = 10*.

B1(1) B2(2) B3(3) time(hour)
0.999 2.000 3.002

fe | (0.014)  (0.028)  (0.043) 15
1.979 1.964 3.087

Ba | (1.464)  (0.308) (0) 1.5
1.079 2.342 3.098

Bu | (0.406)  (1.031)  (0.441) 1.5

Tables 7-8 show the simulation results of the initial estimators 05 = (&B, BB), g = (&g, Bc;),

bu = (av, Buv).

In Tables 7-8, although 0¢ and Oy have considerable biases, 65 with (r1,72) = (0.7,1.0) is unbiased.
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Table 9: hybrid estimators &g, &¢ and ay with &g, &g and au, respectively.

6:1(3) a2(7)  a3(5)  &a(2)  as(d)  &e(6) || time(sec.)
3.000 6998  5.021 2001 3990  5.999

ap | (0.045)  (0.056) (0.200)  (0.012)  (0.086)  (0.008) 40
2489  10.153  4.965 1981  4.001 5.999

ac | (1.853) (4.444)  (0.320) (0.197) (0.031)  (0.004) 40
3680 6933 4878 2760  3.951 5832

au | (3.018)  (2.564) (1.662) (5.263)  (0.245)  (1.386) 40

Table 10: hybrid estimators BB, BG and BU with 53, 9~G and 0~U, respectively.

B1(1)  P2(2)  B3(3) || time(sec.)
1.001 2.001 3.000

B | (0.005) (0.010) (0.014) 40
2.007 2.000 3.000

Be | (1.404)  (0.010)  (0.014) 40
1.115 2.295 3.104

Bu | (0.504) (0.817) (0.472) 40

Tables 9 -10 show the results of the hybrid estimators O = (a5, 85), O = (dq, Ba), 6

In Tables 9-10, éc and éU have considerable biases.
On the other hand, g with (r1,72) = (0.7,1.0) in Table 9 has good behavior.

v = (av, Bv).
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3.2. In case that ¢ = 0.05

Table 11: adaptive ML type estimator with the initial value being the true value

@1(3) a2 (7) a3(5) @4(2) as(4)  ae(6)  Bi(1) B2(2)  Bs(3) || time(sec.)
2.999 6.999 5.002 2.000 3.997 6.000 1.000 2.000 3.000
true | (0.009) (0.012) (0.034) (0.006) (0.073) (0.008) (0.005) (0.010) (0.014) 40

Table 12: adaptive ML type estimator with the initial value being the uniform random
number on ©

a1(3) as(7) a3(5) &4(2) a5 (4) 66 (6) B1(1)  Ba2(2)  PBs(3) || time(sec)
24.226 24.702 2.890 25.031 3.156 26.583 1114 2117 3.104
unif | (15.068) (15.596) (2.618) (15.876) (1.042) (15.534) (0.049)  (0.050)  (0.055) 40
5 (3) (4)

Tables 11 shows the simulation results of the adaptive ML type estimator (aA . BA‘n) when the initial value

is the true value.

We see from Tables 11 that all estimators have good behavior.

Tables 12 shows the simulation results of the adaptive ML type estimator (d(:")n, Bf:)n) with the initial value
being the uniform random number on ©.

All estimators have considerable biases, which means that the optimization fails since the initial value may be

far from the true value.
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Table 13: initial Bayes type estimator dé}%oﬂ with no = 10*.

a1(3) a2(7)  a3(5)  &a(2) as(d)  &g(6) || time(hour)
3587 6654 5317 2383 3966 5084

i =1.0 | (2638) (1.389) (1.457) (3.751) (0.483)  (0.081) 8
3388 7183 5386 2443 3062 50986

ry=0.7 | (2564) (3.408) (1.403) (4.505) (0.483) (0.082) 8
7432 7235 5632 20209 3076 5076

ri =05 | (5.982) (4564) (1.379) (0.091)  (0.497)  (0.082) 8
3506 6607  7.412 2134 4020 5074

ry=0.3 | (1.088) (0.536) (1.956) (0.139) (0.544) (0.142) 8
5734 6873 10520 4623 4344 6369

ri=0.1 | (2.384) (0.980) (2.878) (1.311) (0.757)  (0.441) 8

Table 14: initial Bayes type estimator 5(72710,7"2 with ai},{o,m and ng = 10%.

£1(1) B2(2) B3(3) time(hour)
1.001 2.002 3.002

ry =1.0,ro =1.0 | (0.015) (0.034) (0.043) 15
1.002 2.002 3.002

ri=0.7,r, =10 | (0024) (0.028) (0.044) 15
1.003 2.000 3.002

ry =057, =1.0 | (0.020) (0.028) (0.043) 15
1.001 2.000 3.002

r1=0.3,r,=0.6 | (0019) (0.028) (0.043) 15
1.033 2.052 3.006

ri=0.1,7,=0.2 | (0063) (0.101) (0.052) 15

&

Tables 13-14 show the simulation results of the initial Bayes type estimator 05 = ( engary?
the sample size of the reduced data no = 10* and the tuning parameters (r1,72) = (1.0, 1.0), (0.7, 1.0),

(0.5,1.0), (0.3,0.6) and (0.1,0.2).

In Table 13, all initial Bayes type estimators have considerable biases.
In Tables 14, most of the initial Bayes estimators have good performance.

5’2220,2) when
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2)
10,72

Table 15: hybrid estimator & with the initial Bayes estimator a‘'), », and

(3 () a3(5) @a(2)  as(d)  &(6) ][ time(sec)
3438 6./62 5078 2441 4012 5004
r=1.0,r, =1.0 | (2.265) (1.200) (0.819) (4.370) (0.214)  (0.026) 40
3350 7325 5144 2431 4039 5005
ri=0.7,r5 =10 | (2.614) (4.157) (0.790) (4.506) (0.194)  (0.024) 40
4262 7346 5084 2002 4039 5005
1 =0.5,r,=1.0 | (5677) (4.657) (0.418) (0.024) (0.212)  (0.025) 40
3085 6072 5145 2004 4027 5005
ri=03,75 =06 | (0790) (0.205) (0.617) (0.026)  (0.170)  (0.024) 40
4862 7034 4880 3418  3.925 5054
r=0.1,r, =02 | (3425) (1.888) (2.015) (2.038) (0.559)  (0.653) 40

Table 16: hybrid estimator 3 with dé},{m and Bi?,{o,m

£1(1) B2(2) B3(3) time(sec.)
1.004 2.002 3.000

ry=1.0,72=1.0 | (0.019) (0.019) (0.014) 40
1.002 2.001 3.000

ri=0.7,75 =1.0 | (0.015) (0.015) (0.014) 40
1.007 2.000 3.000

71 =057 =10 | (0.030) (0.010) (0.014) 40
1.001 2.000 3.000

ry = 03,75 =0.6 | (0.007) (0.010) (0.014) 40
1.025 2.039 3.003

r1=0.1,7r, =02 | (0.046) (0.060) (0.021) 40

Tables 15-16 show the results of the hybrid estimators 0, = (Ge,n, Be,n) with the initial Bayes type
estimators in Tables 13-14, respectively.

In Tables 15-16, the hybrid estimator of («, 3) with (r1,r2) = (0.3,0.6) is best among the competing hybrid
estimators.
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Table 17: initial estimators &g = Qe ng,rq,r (11 =0.3,72
points), G (7% 4 34 random numbers) with ng = 10*.

=0.6), ag (18° 4 130° lattice

G1(3) G2 (7) a3(5) G4(2) as(4) a6 (6) time(hour)
3.506 6.607 7.412 2.134 4.020 5.974

Gp | (1.088)  (0.536) (1.956) (0.139)  (0.544)  (0.142) 8
4.566 7.538 13.566 2.316 4.510 5.566

Gc | (6.878) (4.872) (5.615) (1.120) (1.617) (0.000) 12
4.130 6.387 6.596 2.671 3.864 6.001

Gu | (3712) (1.909) (4.069) (4.410) (0.871) (1.258) 15

Table 18: initial estimators BB = Beng,rime (11 =0.3,72 = 0.6), Bc (18° + 130 lattice
points), Bu (7° + 34 random numbers) with ng = 10*.

B1(1) B2(2) B3(3) time(hour)
1.001 2.000 3.002

Br | (0.019) (0.028) (0.043) 15
1.160 1.945 3.087

Bc | (0.038) (0.066)  (0.000) 15
1.004 2.010 3.006

Bu | (0.023) (0.041) (0.049) 15

Tables 17-18 show the simulation results of the initial estimators 6 = (aB, BB), e = (&g, BG)

v = (aw, Buv).

In Tables 17-18, 85, B¢ and By are unbiased, but &g with (r1,72) = (0.3,0.6), &g and @y have

considerable biases.
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Table 19: hybrid estimators &g, &g and &y with ag, ag and ay, respectively.

(3 () a3(3) @a(@)  as(d)  &(6) ][ time(sec)
3.085 6972 5145 2004 4027 599

ap | (0.790)  (0.205) (0.617) (0.026) (0.170)  (0.024) 40
5607 7205  4.250 1651 4017  6.046

G | (5.801) (4.904) (1.768) (0.817) (0.163)  (0.509) 40
3997 6561 4992 2765 4037  6.035

au | (3.607)  (1.488)  (1.064)  (4.424) (0.263)  (1.142) 40

Table 20: hybrid estimators BB, BG and BU with 05, 6 and Oy, respectively.

£1(1) B2(2) B3(3) time(sec.)
1.001 2.000 3.000

B | (0.007) (0.010) (0.014) 40
1.051 2.012 3.002

Bc | (0.044) (0.027)  (0.024) 40
1.006 2.011 3.003

Bu | (0.022) (0.036)  (0.021) 40

Tables 19-20 show the results of the hybrid estimators O = (&5, 85), 0c = (da, Ba), 0u = (au, Bu).
In Tables 19, &g and Gy have considerable biases. On the other hand, &g with (r1,72) = (0.3,0.6) in

Table 19 has good behavior.
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Concluding remarks:

In order to calculate the ML type estimator by optim() in R language, it is quite crucial
to select a suitable initial value.

It is useful to obtain the Bayes type estimator as an initial estimator since the Bayes type
estimator does not strongly depend on the initial value.

We need to develop the theory of computational statistics, which expands high speed
and rigorous high frequency data analysis.
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