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Model I

Let Θ ⊂ Rd, Θ-compact. We aim at estimating the unknown drift
parameter θ ∈ Θ of a jump diffusion process Xθ given by

Xθ
t = Xθ

0 +

∫ t

0
b(θ,Xθ

s ) ds+

∫ t

0
σ(Xθ

s ) dWs +

∫ t

0
γ(Xθ

s−) dLs

where t ∈ R+, W = (Wt)t≥0 is a one-dimensional Brownian motion
and L a pure jump Lévy process with Lévy measure ν, such that

∫
{0<|z|≤1}

|z|ν(dz) <∞.



Sampling scheme

High frequency data with an observation time going to infinity:

0 ≤ t0 ≤ . . . ≤ tn Xθ
t0 , . . . , X

θ
tn

such that

∆n := max{ti − ti−1 : 1 ≤ i ≤ n} → 0, as n→∞;

tn →∞ and tn = O(n∆n).

Goals:
I efficient estimation of the drift parameter,
I minimal conditions on the sampling step ∆n.



Literature about the high frequency inference for diffusion
with jumps

I [Masuda (13)]: Gaussian quasi-likelihood estimators
I [Shimizu and Yoshida (06)]: contrast-type estimation function,

jumps of compound Poisson type.
I [Shimizu (06)]: include more general driving Lévy processes.
I [Tran(14)]: LAN property for drift and diffusion parameters via

Malliavin calculus.
I [Mai(2014)]: drift estimation for Lévy-driven

Ornstein-Uhlenbeck.

except [Mai(2014)], joint estimation of the drift, diffusion and jump
part parameters is considered;
under condition which is at best

n∆2
n → 0.



I The estimation of the volatility is feasible on a compact
interval,

I the estimation of the drift and the jump law requires a growing
time window.

I Due to the Poisson structure of the jump part the estimation
of the jump parameter can be well separated from those of the
drift and the diffusion.

We focus on the estimation of the drift parameter only; and
construct a consistent, asymptotically normal and efficient
estimator, under conditions

n∆3−ε
n → 0.

Remark: the condition n∆3
n → 0 was found by

[Florens-Zimrou(89)] and [Yoshida(92)] in the case of drift
estimation for continuous diffusions.
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The equation of the model can be rewritten as

Xθ
t = Xθ

0+

∫ t

0
b(θ,Xθ

s ) ds+

∫ t

0
σ(Xθ

s ) dWs+

∫ t

0

∫
R
γ(Xθ

s−)zµ(ds, dz)

where µ is the Poisson random measure on [0,∞)× R,

Lt =

∫ t

0

∫
R
zµ(ds, dz)

is the Lévy process with Lévy-Khintchine triplet (0, 0, ν) such that∫
{0<|z|≤1}

|z|dν(z) <∞.

Xθ
0 , W and L are independent.



Assumption ( Existence)

Assumption ( Irreducibility)

Assumption ( Non-degeneracy)
There exists some α > 0, such that σ2(x) ≥ α for all x ∈ R.

Assumption ( Identifiability)

Assumption ( Hölder-continuity of the drift and its 1,2
derivatives with respect to θ.)

Assumption ( Subpolynomial growth of all Hölder constants)



Assumption ( Jumps)
The jump coefficient γ is bounded from below;
If ν(R) =∞,

∫
0<|z|≤1 |z|ν(dz) <∞, the Lévy measure ν is

absolutely continuous with respect to the Lebesgue measure, and γ
is upper bounded.

Assumption ( Ergodicity)

(i) For all q > 0,
∫
|z|>1 |z|

qν(dz) <∞.

(ii) For all θ ∈ Θ there exists a constant C > 0 such that
xb(θ, x) ≤ −C|x|2, if |x| → ∞.

(iii) |γ(x)|/|x| → 0 as |x| → ∞.
(iv) |σ(x)|/|x| → 0 as |x| → ∞.
(v) ∀θ ∈ Θ, ∀q > 0 we have E|Xθ

0 |q <∞.

The last Assumption ensure the existence of unique invariant
distribution πθ, as well as the ergodicity of the process Xθ,
similarly to [Masuda(2007)].



Lemma
For all θ ∈ Θ, Xθ admits a unique invariant distribution πθ and the
ergodic theorem holds:
1. for every measurable function g : R→ R satisfying
πθ(g) <∞, we have a.s.

lim
t→∞

1

t

∫ t

0
g(Xθ

s )ds = πθ(g).

2. For all q > 0, πθ(|x|q) <∞.
3. For all q > 0, supt∈RE[|Xθ

t |q] <∞.
4. Moreover,

lim
t→∞

1

t

∫ t

0
E[|Xθ

s |q]ds = πθ(|x|q).
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Construction of the estimator

Recall that we observe a finite sample

Xt0 , . . . , Xtn ; 0 = t0 ≤ t1 ≤ . . . ≤ tn (1)

A natural approach to estimate the unknown drift parameter =MLE

I the likelihood function based on the discrete sample is not
tractable in this setting, since it depends on the transition
densities of X which are not explicitly known.

I On the contrary, the continuous-time likelihood function is
explicit.



Denote the true parameter value by θ?, We shorten X for Xθ? and
P,E, π for respectively P θ

?
, Eθ

?
, πθ

?
.

The continuous time likelihood function is given by

Lt(θ,X) =
dP θt
dPt

(X) =

exp

(∫ t

0
σ(Xs)

−2b(θ,Xs) dX
c
s −

1

2

∫ t

0
σ(Xs)

−2b(θ,Xs)
2 ds

)
.

We define the log-likelihood function as

`t(θ) := lnLt(θ,X).

Our aim is to approximate `t(θ) from discrete sample and thus
define some contrast.

The problem is that Xc is unobserved !



Define the increment’s operator ∆n
i :

∆n
i X = Xti −Xti−1 , ∆n

i X
c = Xc

ti −X
c
ti−1

∆n
i Id = ti − ti−1.

Let (ain), i = 1, . . . n, be a sequence of positives random variables,
ain measurable with respect to {Xtj ; j < i}. We suppose there
exist a ∈ R∗+, ā ∈ R∗+ such that 0 < a ≤ ain ≤ ā <∞.
Let ε ∈ (0, 1/2) and denote

vin = ainvn, vn = ∆1/2−ε
n , n ≥ 1, i = 1 . . . , n. (2)

`ntn(θ) =
n∑
i=1

b(θ,Xti−1)

σ(Xti−1)2
∆n
i X1{|∆n

i X|≤vin} −
1

2

n∑
i=1

b(θ,Xti−1)2

σ(Xti−1)2
∆n
i Id.

Finally, we define an estimator θ̂n of the true value θ? as

θ̂n ∈ argmax
θ∈Θ

`ntn(θ)

and in the sequel we call it the filtered MLE (FMLE).
This kind of thresholding technics was already used in
[Shimizu and Yoshida (06)], [Mai(2014)], [Cecilia Mancini (11)].
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Main results

without further assumptions on n and ∆n,

Théorème (Consistency)
The FMLE θ̂n is consistent in probability:

θ̂n
P−→ θ?, n→∞.



Define the asymptotic Fisher information by

I(θ) =

(∫
R

∂θib(θ, x)∂θjb(θ, x)

σ2(x)
πθ(dx)

)
1≤i,j≤d

. (3)

Assumption
For all θ ∈ Θ, I(θ) is non-degenerated.



Théorème (Asymptotic normality)
Assume furthermore that n∆3−ε

n → 0,

√
n∆3/2−2ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2

→ 0

and
√
n∆n

(∫
|z|≤3āvn

|z|ν(dz)

)1−ε/2

→ 0

as n→∞. Then the FMLE θ̂n is asymptotically normal:

t1/2n (θ̂n − θ?)
L→ N(0, I−1(θ?)), n→∞.

The FMLE θ̂n is asymptotically efficient.

Remarque
If ν has a bounded Lebesgue density, all the conditions reduce to
n∆3−4ε

n → 0.



Example (tempered stable jumps)
The Lévy measure in this case has an unbounded and
non-integrable density given by

ν(dz) = C|z|−(1+α)e−λ|z|dz

with λ > 0 and C > 0 satisfies the conditions of the previous
Theorem if 0 < α < 1.
The conditions on n, ∆n and ν can now be summarized as
n∆2−α−ε̃

n → 0 for some ε > 0. We observe that a higher
Blumenthal-Getoor index α requires a faster convergence ∆n to
zero. This is in line with the intuition that when the intensity of
small jumps increases (i.e. α increases) more and more frequent
observations are needed to have a sufficient performance of the
jump filter.
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Jump filtering

Proposition (jump filtering)

(i) without any assumption on the way that ∆n → 0 as n→∞,

1

n∆n
sup
θ∈Θ

∣∣∣∣∣
∫ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X1|∆n

i X|≤v
i
n

∣∣∣∣∣ P−→ 0;

(ii) if n∆3−ε
n → 0,

√
n∆

3/2−ε
n

(∫
|z|≥3avn/γmin

ν(dz)
)1−ε/2

→ 0 and
√
n∆n

(∫
|z|≤3āvn

|z|ν(dz)
)1−ε/2

→ 0, then

1√
n∆n

∣∣∣∣∣
∫ tn

0

f(θ,Xs) dX
c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X1|∆n

i X|≤v
i
n

∣∣∣∣∣ P−→ 0.



Lemma (Euler scheme)

(i) as n→∞,

sup
θ∈Θ

1

n∆n

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X

c

∣∣∣∣∣ P−→ 0;

(ii) if n∆3−ε
n → 0, then, as n→∞, ∀θ ∈ Θ

1√
n∆n

∣∣∣∣∣
∫ tn

0
f(θ,Xs) dX

c
s −

n∑
i=1

f(θ,Xti−1)∆n
i X

c

∣∣∣∣∣ P−→ 0.
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Ornstein-Uhlenbeck-type processes

Suppose that we are given a discrete sample

Xt0 , . . . , Xtn for ti = i∆n and i = 0, . . . , n, (4)

of an Ornstein-Uhlenbeck-type (OU) process (Xt)t≥0:

dXt = (θ2 − θ1Xt) dt+ σ dWt + dLt X0 = x, (5)

Our goal is to estimate the unknown drift parameter
θ = (θ1, θ2) ∈ R2. The volatility parameter σ > 0 might be
unknown. The jump component (Lt)t≥0 will be of compound
Poisson type:

Lt =

Nt∑
i=1

Zi, for t ≥ 0.

with intensity λ and the jump heights Zi i.i.d. N (0, 1).



FMLE for θ is the solution θ̂OU
n = (θ̂OU

1,n , θ̂
OU
2,n) to the following set of

linear equations in θ1 and θ2.

θ1 =
θ2In(X, 1)−

∑n
i=1Xti−1∆n

i X1|∆n
i X|≤vin

In(X, 2)
,

θ2 =

∑n
i=1 ∆n

i X1|∆n
i X|≤vin + θ1In(X, 1)

tn
, (6)

where we introduced the functional

In(X, p) :=

n∑
i=1

Xp
ti−1

∆n
i Id for p ∈ R. (7)

The FLME for the first component of θ results in

θ̂OU
1,n =

(
1− In(X,1)2

tnIn(X,2)

)−1
×

×
In(X, 1)

∑n
i=1 ∆n

i X1|∆n
i X|≤vin − tn

∑n
i=1Xti−1∆n

i X1|∆n
i X|≤vin

tnIn(X, 2)
.

The second component θ̂OU
2,n follows now easily by plugging θ̂OU

1,n

into (6).



Suppose θ2 = 0. Choose vn = ∆
1/2−ε
n = ∆0.49

n and consider first
the choice of constant weights ain = 5 in the jump filter

”decide no jump on[ti, ti+1[←→ |∆n
i X| < ainvn.”

The results of the simulations are given in columns 3–5 for σ = 1:

ain = 5 ain = 5× σ̂in
tn n mean std dev jumps filt mean std dev jumps filt
10 100 1.84 0.47 1.23 1.90 0.52 0.43

400 2.00 0.45 4.16 2.05 0.52 3.04
1000 2.06 0.45 5.98 2.08 0.49 5.28

50 500 1.77 0.22 6.19 1.80 0.24 3.00
2000 1.95 0.20 20.8 1.95 0.23 16.3
5000 1.99 0.20 30.0 2.00 0.22 27.0

100 3000 1.91 0.14 34.9 1.93 0.17 25.9
104 1.98 0.14 60.1 1.98 0.16 54.0

3× 104 2.00 0.14 76.2 2.00 0.15 73.3

Table : Monte Carlo estimates of mean and standard deviation from 5000
samples of θ̂OU

1,n for an OU process with compound Poisson jumps with
intensity λ = 1, σ = 1 and true parameter θ1 = 2.



If σ = 3, the same estimator appears almost useless (see columns 3–4 of Table
29). This comes from the fact that many increments of the Brownian part
σ(Wti −Wti−1) are larger than the threshold vin = 5×∆0.49

n in the situation
σ = 3 and are confounded with jumps.

ain = 5 ain = 5× σ̂in
tn n mean std dev jumps filt mean std dev jumps filt
10 100 1.33 0.51 9.16 1.94 0.59 8.4× 10−3

400 1.41 0.53 35.8 2.10 0.64 0.27
1000 1.44 0.54 85.0 2.14 0.65 1.31

50 500 1.26 0.23 45.4 1.80 0.24 0.06
2000 1.33 0.30 180 1.98 0.28 1.53
5000 1.35 0.23 425.0 2.01 0.28 6.63

100 3000 1.30 0.16 273 1.95 0.19 0.11
104 1.34 0.17 850 1.99 0.19 13.2

3× 104 1.36 0.16 2386 2.01 0.19 36.4

Monte Carlo estimates of mean and standard deviation from 5000 samples of
θ̂OU1,n for an OU process with compound Poisson jumps with intensity λ = 1,
σ = 3 and true parameter θ1 = 2.



Hence, it is important for finite sample properties of the estimator
to take into account the volatility of Xc for the choice of the jump
threshold.
We introduce the threshold vin = 5× σ̂in ×∆0.49

n , where (σ̂in)2 is an
estimation of the quadratic variation of the process on K = 30 past
observations,

(σ̂in)2 =
1

∆nK

K∑
l=1

(
∆n
i−lX

)2 (8)

and for convenience we set (σ̂in)2 = (σ̂K+1
n )2 for 1 ≤ i ≤ K.



Remark: the number of filtered jumps is much smaller than the
true expected number of jumps.
As the number of ’filtered jumps’ is a decreasing function of the
threshold, it is possible to find the threshold vni = a(∆n)0.49,
a > 0, such as the average number of ’filtered jumps’ is equal to
the expected number of jumps λtn. It appears that the estimator
has a higher bias than when the number of jumps was
underestimated. Hence, it seems preferable, in some situations, to
filter less jumps than the true number of jumps.

vin = a∆0.49
n

tn n a mean std dev jumps filt
10 400 2.551 1.88 0.41 10.0
50 5000 2.897 1.94 0.19 50.0
100 104 2.9 1.93 0.14 100

Table : Monte Carlo estimates of mean and standard deviation from 5000
samples of θ̂OU

1,n for an OU process with compound Poisson jumps with
intensity λ = 1, σ = 1, true parameter θ1 = 2, and with threshold such
as the estimated number of jumps is unbiased.



Infinite activity

We consider again the O.U. model (5), with θ2 = 0, and where the
driving Lévy process (Lt)t≥0 is a tempered α-stable process:

ν(dx) = κ|x|−(1+α)e−b|x|dx,

for α ∈ (0, 1), b > 0, κ = κα :=
[

Γ(1−α)
α cos(π2α)

]−1
,

which is the scale constant such that the symmetric stable process
(Lαt )t with jump intensity κα|x|−(1+α)dx admits a Lévy Kintchine
exponent E[eiuL

α
1 ] = e−|u|

α
.

For the simulation of the increments of the tempered stable process
we use the acceptance–rejection method given in
[Bauemer and Meerschaert(10)], [Kawai and Masuda(11)].



remind: (σ̂i
n)2 = 1

∆nK

∑K
l=1

(
∆n

i−lX
)2

ain = 5 ain = 5× σ̂i
n ain = 5× σ̃i

n
tn n mean std dev j filt mean std dev j filt mean std dev j filt
10 100 1.69 0.386 5.16 1.87 0.455 1.19 1.86 0.458 1.03

400 1.91 0.329 9.78 2.00 0.400 4.56 1.98 0.362 5.73
1000 1.98 0.262 13.7 2.03 0.410 8.59 2.01 0.341 10.5

50 500 1.66 0.150 27.0 1.82 0.184 7.62 1.81 0.184 9.07
2000 1.85 0.105 49.5 1.96 0.177 23.3 1.94 0.104 31.3
5000 1.92 0.088 71.1 1.99 0.166 43.4 1.97 0.088 55.3

100 3000 1.81 0.079 52.8 1.94 0.129 38.6 1.92 0.070 52.8
104 1.91 0.064 142 1.98 0.110 86.7 1.97 0.056 111

3× 104 1.96 0.056 213 1.99 0.083 165 1.99 0.046 200

Table : Monte Carlo estimates of mean and standard deviation from 2000
samples of θ̂OU

1,n for an OU process with tempered α-stable jumps,
α = 0.9, σ = 1, b = 10−2, and true parameter θ1 = 2.



σ̂in tends to overestimate σ due to the presence of the infinite
number of jumps of the stable process.

We propose to reduce the contribution of the stable process in the
estimation of the local volatility by removing in the sum
(σ̂in)2 = 1

∆nK

∑K
l=1

(
∆n
i−lX

)2 the contribution of the biggest
increment maxl∈{i−K,...,i−1} |∆n

l X|2.

This tends to suppress the contribution of the largest jump of the
stable process and considerably reduces the upward bias for the
estimation of the local volatility. We note σ̃in this correction of the
quantity σ̂in
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Conclusion

Our work shows that by focusing on the drift estimation the
condition n∆2

n → 0 can be relaxed.

It is in accordance with the condition n∆3
n → 0 of

[Florens-Zimrou(89)] and [Yoshida(92)] in the case of drift
estimation for continuous diffusions.

It seems preferable to filter less jumps than the true number of
jumps=small jumps can be tolerated
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Thank you for your attention!
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