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Introduction

This talk gives an overview of some recent results in statistical methods
of detecting changes in random sequences and processes.

Example 1
A random sequence Xn = ξ1 + . . .+ ξn, where ξk are independent and
their distribution changes from F to G at time θ:

ξk ∼ F for k < θ, ξk ∼ G for k > θ.

Example 2
A Brownian motion with drift appearing after time θ:

Xt = µ(t− θ)+ +Bt.
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An example of a changepoint:
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Overview of the talk

1. Brief history

2. A general changepoint model and sufficient statistics

3. Corollaries: solutions of some particular problems

4. Some financial applications

Remarks

– In this talk only on-line detection procedures are considered:
they make a decision about the change in a non-anticipative way.

– We’ll focus on exact optimal detection rules, mostly in Bayesian set-
tings
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History of changepoint detection theory

– One of the first who considered changepoint detection problems was
W. A. Shewhart: the method of control charts (1925)

– The basic statistics for simple alternatives and iid observations were
studied by Roberts, Page, Shiryaev, Lorden and others in the 1960-70s

– Further developments: multiple post-change alternatives, non-iid ob-
servations, combining with optimal control problems, etc.
A good review can be found in Tartakovsky & Nikiforov (2015)
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A general changepoint model

Let (Ω,F , (Ft)t>0) be a filtered measurable space and P, Q are two
locally equivalent probability measures (Pt ∼ Qt for all t > 0):

– P describes the behavior before the change,

– Q after the change.

We want to paste these two measures together at some time θ > 0.

Example
Ω = C([0,∞)) and ωt is a Brownian motion under P and a Brownian

motion with drift µ under Q. Then dQt = exp(µωt − µ2

2 t)dPt.
The measure Pθ corresponding to the change at time θ is defined by

dPθt
dPt

=

{
exp(µ(ωt − ωθ)− µ2

2 (t− θ)), t > θ,

1, t < θ.
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Let R = (P + Q)/2 so that P,Q� R, and define the density processes

Z0
t =

dQt

dRt
, Z∞t =

dPt
dRt

, t > 0.

Let Zθt be the new density process

Zθt = Z∞t I(t < θ) + Z0
t

Z∞θ−
Z0
θ−

I(t > θ)

of the corresponding measure Pθ such that for all A ∈ Ft

Pθ(A) = ER(Zθt I(A)).

We interpret (Ω,F , (Ft)t>0,P
θ) as the model with a changepoint at θ.
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Criteria of optimality of changepoint detection rules

A changepoint detection rule is identified with a stopping time τ of the
filtration Ft. We want τ to be as close as possible to θ in some sense,
for example minimizing E|τ − θ|.

A Bayesian problem

Let G(t) be a distribution function on R+. Consider the following op-
timality criterion: ∫ ∞

0
Eθ|τ − θ|dG(θ)→ min .

Then θ can be thought of as a random variable with prior distributionG.

(Below we’ll also discuss a wider class of penalty functions instead of |τ − θ|)
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Namely, define on the space (Ω× R+,F ⊗ B(R+)) the measure

PG(A×B) =

∫
B

Pt(A)dG(t).

Then the process Xt((ω1, ω2)) = ω1(t) can be interpreted as the observ-
able process, and the random variable θ((ω1, ω2)) = ω2 as the change-
point.

The optimality criterion above can be written as follows:∫ ∞
0

Eθ|τ − θ|dG(θ) = EG|τ − θ|.

8/41



Introduce the process (the so-called Shiryaev–Roberts statistic):

ψt =

∫ t

0

Zst
Z∞s

dG(s).

Proposition 1. We show that

min
τ

∫ ∞
0

Eθ|τ − θ|dG(θ) = min
τ

EP
(
G̃(τ) +

∫ τ

0
ψsds

)
.

where G̃(t) =
∫∞
t (s− t)dG(s).

Thus the changepoint detection problem reduces to the optimal stopping
problem for ψt. In some cases it can be solved explicitly,
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Remark: the posterior probability process

In the Bayesian setting, another process is often used:

πt = PG(θ 6 t | Ft)

(assuming θ is defined as a random variable).

It can be shown that

πt =
ψt

1−G(t) + ψ(t)
,

so the optimal stopping problem above for ψt can be equivalently rewrit-
ten in terms of πt.

We will use ψt as it will be more convenient in more general problems
discussed next.
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The SDE for ψt

Let Zt = dQt

dPt
. Then the process ψt satisfies the SDE

dψt = dG(t) +
ψt
Zt
dZt, ψ0 = G(0).

Particular convenient cases

1. If the observable process Xt is a diffusion with diffusion coefficient
σ(t, x) and drift changing from 0 to µ(t, x), we have

dψt = dG(t) + ψtµ(t,Xt)dXt,

so the optimal stopping problem is for a Markov process.
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2. If Xt changes only at discrete moments of time n = 0, 1, 2, . . ., so
that Xn is a Markov sequence under both P and Q, then with some
functions fk

Zn =

n∏
k=1

fk(Xk−1, Xk).

If the support of G(t) is N ∪ {0}, then the sequence ψn satisfies the
following recurrent formula

ψn = fn(Xn−1, Xn)(∆G(n) + ψn−1).

In particular, if Xn is a sequence of independent r.v. under P and Q,
then fk do not depend on Xk−1 and ψn is itself Markov under P, Q.
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Examples: Brownian motion

Suppose observed is the process

Xt = µ(t− θ)+ +Bt,

where Bt is a Brownian motion, θ is a non-negative random variable
independent of Bt with a known prior distribution G(t).

We want to find a stopping time τ (with respect to to the filtration of
Xt) which minimizes

EG|τ − θ|.

In the case when G is the exponential distribution, the solution is well-
known. We show how it can be solved for general G.
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In this case ψt satisfies the SDE (with Xt being a B.M. under P)

dψt = dG(t) + µψtdXt, ψ0 = G(0).

The changepoint detection problem reduces to the following standard
Markovian optimal stopping problem

min
τ

EP
(
G̃(τ) +

∫ τ

0
ψsds

)
.

General methods of solutions of these problems can be found in Peskir
& Shiryaev (2006).
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Proposition 2. Under some conditions on G(t), the optimal stopping
time is

τ∗ = inf{t > 0 : ψt > a(t)},

where the stopping boundary a(t) is the unique solution of the integral
equation ∫ T

t
EP
t,a(t)(ψs + G̃′(s))I((ψs < a(s))ds = 0

satisfying the conditions

a(t) > −G̃′(t), a(T ) = 0.

where [0, T ] is the support of G(t).

The integral equation is typically solved by discretizing the time and
finding a(ti) backwards.
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An illustration for the case of uniform distribution G(t):
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Remark: exponential distribution G(t)

When G(t) is exponential, the stopping boundary is constant for the
process πt:

τ∗ = inf{t > 0 : πt > a},

where a can be found explicitly as a root of some algebraic equation
(Shiryaev, 1963).
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Generalizations

The above problem and its solution can be generalized as follows.

1. It is possible to consider a wider class of penalty functions, which
assigns linear or exponential penalty for detection delay:

min
τ

∫ ∞
0

EθH(τ − θ) dG(θ),

where the penalty function

H(t) =


non-increasing, t 6 0

0, t = 0

ct or c(ebt − 1), t > 0
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In this case the changepoint detection problem reduces to the optimal
stopping problem

min
τ

EP
(
H̃(τ) +

∫ τ

0
ψ(b)
s ds

)
,

where

H̃(t) =

∫ ∞
t

H(t− s)dG(s)

and ψ
(b)
t is the generalized Shiryaev–Roberts statistic, which satisfies

the SDE

dψ
(b)
t = bψ

(b)
t dt+ dG(t) +

ψ
(b)
t

Zt
dZt, ψ(b)

y = G(0).
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2. It is possible to consider a conditional optimality criterion: given two
penalty functions H1(t) and H2(t) as above,

minimize

∫ ∞
0

EθH1(τ − θ)dG(θ)

over stopping times τ satisfying the following condition for some α:∫ ∞
0

EθH2(τ − θ)dG(θ) 6 α.

For example if H1(t) = max(t, 0) and H2(t) = I(t < 0) we get the
classical problem of minimizing the detection delay given given the max-
imum probability of a false alarm.

This setting reduces to the above one by Lagrange multipliers.
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Confidence intervals for θ

Choosing H(t) = I(|t| > ε), the above problem becomes the problem
of finding the best online confidence interval of length 2ε:

maximize PG(|τ − θ| 6 ε).

This problem is interesting as it does not reduce to a Markov optimal
stopping problem.

Proposition 3. We have

max
τ

PG(|τ − θ| 6 ε) = max
τ

EP
(
ψτ − ψτ−ε +G(τ + h)−G(τ)

)
.

(τ − ε is not a stopping time)
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Although it is not known how to solve such an optimal problem analyt-
ically, we can obtain, in some sense, an optimal stopping time τ∗ when
ε→ 0, which turns out to be deterministic.

Namely, for a stopping time τ define

R(τ) = lim
ε→0

PG(|τ − θ| 6 ε)

2ε
.

Proposition 4. Suppose θ takes on values in a bounded interval [0, T ]
and G(t) has a continuous density on [0, T ], which attains its maximum
at a point t∗ ∈ (0, T ).

Then τ∗ = t∗ and R(τ∗) = g(t∗).
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Optimal stopping problems with changepoints

Let (St)t>0 be a geometric Brownian motion with a changepoint:
a process such that

dSt
St

=

{
µ1dt+ σdBt, t < θ,

µ2dt+ σdBt, t > θ,
S0 = 1,

where

B = (Bt)t>0 is a standard Brownian motion;

σ > 0 and µ1 > 0 > µ2 are known parameters;

θ is the changepoint uniformly distributed on (0, 1),
i.e. G(t) = G(0) + ρt for t ∈ [0, T ), where ρ 6 1.
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We consider the following optimal stopping problem:

V = sup
τ61

ESτ .

This problem was proposed by Beibel & Lerche (1997), and later also
studied by Novikov & Shiryaev (2008), Ekstrom & Lindberg (2012) and
others when θ is exponentially distributed.

By changing the parameters the result can be extended to the problems
Vα = sup

τ61
ESατ and also V0 = sup

τ61
E log(Sτ ).
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A solution of the problem

Let Xt = (logSt − µ1t− σ2t/2)/σ, µ = (µ1 − µ2)/σ.

Introduce the new measure P̃ such that

(Xt − σt) is a P̃ – Brownian motion.

We find that for any stopping time τ 6 1

EGSτ = EP̃
[
eµ1τ (ψτ + 1− τ)

]
,

where the statistic ψt here is given by

ψt = e−µXt−µ2t/2
(
G(0) +

∫ t

0
eµXs+µ2s/2ρds

)
.
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Proposition 5. The optimal stopping time is

τ∗ = inf{t > 0 : ψt > a∗(t)},

where a∗(t) is the unique continuous solution of the equation∫ 1

t
eµ1sEP̃

[
(µ2ψs + µ1(1− s))I(ψs 6 a∗(s))

∣∣∣ψt = a∗(t)
]
ds = 0,

satisfying the conditions

a∗(t) >
µ1
|µ2|

(1−G(0)−ρt) for t < 1, a∗(1) =
µ1
|µ2|

(1−G(0)−ρ).

The value V = ESτ∗ can be found from the formula

V =

∫ 1

0
eµ1sEP̃[µ2ψs + µ1(1− s)]I(ψs < a∗(s))ds+ 1.
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A discrete-time version

In the discrete time it makes sense to consider the problem when also
the volatility can change.

Suppose we sequentially observe a random sequence S̃0, S̃1, . . . , S̃N of
the following structure

log
S̃n

S̃n−1
=

{
µ1 + σ1ξn, n < θ

µ2 + σ2ξn, n > θ
, S̃0 = 1.

where µ, σ are known parameters, ξi are i.i.d. N (0, 1) random variables,
θ is the changepoint with prior probabilities pk = PG(τ = k).
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We consider the following discrete-time optimal stopping problem:

Ṽ = sup
τ6N

ES̃τ .

The Shiryaev–Roberts statistic here is given by

ψ̃n = (pn + ψ̃n−1) · σ
1

σ2 exp
(
(X̃n−µ1)2

2σ2
1
− (X̃n−µ2)2

2σ2
2

)
,

where X̃n = log(S̃n/S̃n−1).
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Proposition 6. The optimal stopping time is given by

τ̃∗ = inf{0 6 n 6 N : ψ̃n > ã∗(n)},

where
ã∗(n) = inf{x > 0 : Ṽn(x) = 0}

for the family of functions Ṽ0, Ṽ1, . . . , ṼN , which are non-decreasing and
can be found from some backward induction formula starting from ṼN .
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Applications

On several financial time series, we show how the above solution can be
applied and compare different choices of parameters µ, σ.

We take sequences of prices where changes of trends in the whole se-
quences can be seen by eye, but we want to detect them from sequential
observations.

Altogether 9 cases: the US stock market in 1929, 1987, 2001, 2008 and
2015; the Japanese stock and land markets in 1990; Iceland in 2008;
the Chinese market in 2015; Apple stock in 2012,

(Economic discussions can be found in e.g. Lleo & Ziemba (2012, 2015)
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A: US 1929 B: US 1987 C: Japan 1990
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Assumptions

1. We observe a sequence of stock prices (or index values)
S0, S1, . . . , ST , which has a positive trend initially.

2. It is assumed that the stock price follows the model

log
St
St−1

=

{
µ1 + σ1ξt, t < θ,

µ2 + σ2ξt, t > θ,

where θ ∈ {1, . . . , T + 1} is a uniform random variable.

3. The parameters µ1, σ1 are estimated using the previous data
S−t0 , . . . , S−1, S0.

The choice of the vallues of µ2, σ2 is subjective and we compare
different possibilities.
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Example 1: Apple Inc, 2009-2012

During 2009-2012, Apple’s stock price increased almost 9 times, from
$82.33 (6-Mar-09), to $705.07 (21-Sep-12). By the end of 2012 it fell
to $532.17.
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We assume T ∼ 31 Dec. 2012.

Buy Sell % of max.
3-Jan-11
($ 329.57)

9-Oct-12
($ 635.85)

90.56

1-Jul-11
($ 343.26)

8-Oct-12
($ 638.17)

90.89

3-Jan-12
($ 411.23)

8-Oct-12
($ 638.17)

90.89

1-May-12
($ 582.13)

9-Oct-12
($ 635.85)

90.56

3-Jul-12
($ 599.41)

9-Oct-12
($ 635.85)

90.56

1-Aug-12
($ 606.81)

11-Oct-12
($ 628.10)

89.46
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On the graphs – the result of applying the method starting on January 3,
2012.

Left – the graph of the price (the red point is the selling price).

Right – the statistic ψ and the optimal stopping boundary.
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Example 2: NIKKEI-225 in the late 1980s We applied the model for
starting dates between 1988 and 1990, which gave the exit date 90-02-
26. The assumption is T ∼ the end of 1990.
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Buy Sell % of max.
88-01-04
(21217.00)

90-02-26
(33322.00)

85.63

88-07-01
(27504.00)

90-02-26
(33322.00)

85.63

89-01-04
(30244.00)

90-02-26
(33322.00)

85.63

89-04-03
(33042.00)

90-02-26
(33322.00)

85.63

89-07-03
(33236.00)

90-02-26
(33322.00)

85.63

89-10-02
(35623.00)

90-02-26
(33322.00)

85.63
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A good exit point is also obtained if the disorder does not happen: below
is the graph when T ∼ the end of 1989.
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The results when the disorder does not happen are as follows.

Buy Sell % of max.
88-01-04
(21217.00)

89-08-31
(34431.00)

88.48

88-07-01
(27504.00)

89-09-07
(34153.00)

87.76

89-01-04
(30244.00)

89-09-08
(34116.00)

87.67

89-04-03
(33042.00)

89-10-12
(34795.00)

89.41

89-07-03
(33236.00)

89-10-16
(34469.00)

88.57
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Comparing different choices of parameters by their scores

µ2 = −µ
σ1 = σ2

µ2 = −2µ
σ1 = σ2

µ2 = −2µ
σ1 = 2σ2

µ2 = −3µ
σ1 = σ2

µ2 = −3µ
σ1 = 3σ2

A 2 5 1 5 1

B 2 4 1 4 1

C 1 4 4 4 4

D 5 7 4 6 0

E 1 4 0 8 2

F 0 4 0 3 4

G 0 1 1 2 0

H 2 6 0 6 2

I 0 2 0 3 1
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Results of the parameters in % of the maximum price on average

µ2 = −2µ
σ1 = σ2

µ2 = −3µ
σ1 = σ2

A 0.85 0.82
B 0.87 0.81
C 0.83 0.81
D 0.96 0.97
E 0.77 0.72
F 0.89 0.9
G 0.91 0.93
H 0.81 0.80
I 0.85 0.87
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Thank you for your attention


