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Introduction

Suppose we observe the process
X = pt + By, t >0,
where B is a Brownian motion, p is an unknown drift coefficient.

We consider the problem of sequentially testing the hypotheses
Hiy:p>0and H_: p < 0.
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Outline

1. The Chernoff problem
2. Optimal stopping problems with unbounded pay-off functions
3. The Kiefer-Weiss problem

4. FBm case
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The Chernoff problem

Assumption: g1 ~ N(0,02) and is independent of B.

A decision rule is a pair (7,d):
— T is a stopping time of X
— d is an F;-measurable function, d(w) € {—1,1}

The Chernoff problem

E[cr + k|p[I(d # sgn(w))] (—) min,

T,

where ¢, k > 0 are constants; without loss of generality ¢ = k = 1.
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Known results

Chernoff and Breakwell: the optimal decision rule is

1
T* :inf{t}(): | X¢| > 0 <t—i—2)}, d* =sgn (X,;+)
20

where b*(t) is some function on R .

They found its asymptotics for t — 0, t — 0o (09 — 00, 09 — 0).
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Solution of the Chernoff problem

Fix oo and introduce the process W = (W})o<i<1,

Wt :Uo(l—t)X t N

og(1-t)

which is a Brownian motion.
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Theorem

The solution of the Chernoff problem is

7_/*
I T T d* = sgn(X, +).
T 03(1 —7'%) gn(Xr-)
where

=inf{0 <t < 1: Wy > a (1)},

and a} (t): [0,1] — R is a non-increasing function which is the unique
solution of the equation (with some concrete function H)

(1—t)H(1—t,a(t)) = /tl 03(1173)2 [q, (a(% )) % (WH ds

in the class of continuous functions a(t) satisfying the property

’“‘ow

0<a()\ (1—1t)fort<1.
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H(t,2) = — ola/VE) — 2 (|l VD).

S
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The optimal stopping boundaries

Left: the boundary aj(t) for the process W.
Right: the boundary b*(t) for the process X.
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Remarks

1. 7'* is the solution of the problem

V:infE[ ¢ —|WT/@, c=2/03,

7/<1 1—7
2. As it follows from the construction of W,

% % 1
b (t):UOt'ao.()(l—Zt),

o)

o~

>—1
Z -
)

9/27



Outline of the proof

For the average penalty we have

E[7 + |p[X(d # sgn(u))]
—BE[r+ E(u~ | Z)H{d = +1} + E(u* | Z){d = —1}].

Thus the problem is equivalent to

&(r) :=E[r+ min{E(n" | Z#;), E(u" | Z;)}] - min .

Compute the conditional expectations:
E(T)=E[r+ H(r +1/02, X;)]
with the function

() =~ o)D)~ 2 o)V,

%\
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Applying the It6 formula, we obtain

| X7 ]

g0
E(r) = 2F |5 — — 271
= T )

+ H (1/a§, 0).
Then we check that

Xy

My = —————— is a martingale.
K oo(t+1/03) &
Applying the change of time, we find that

Wy=M__ is a Brownian motion,
o2 (1-1)

which reduces the Chernoff problem to the optimal stopping problem

. 2
V =inf E 3

— — |W|].
7'<1 0‘0(1 — 7'/) ’ T |
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Auxiliary results: unbounded optimal stopping problems

Consider a Markovian optimal stopping problem

V(t,x) = inf EG(t+7,W,+ x).

T<T—t
Suppose that

G is bounded from above
Esup|G(t+ s, Ws+z)| < oo forany z € R, t > 0.

s=>0

Then the solution of the optimal stopping problem exists and
=inf{s>0:(t+s,Ws+z) € D}
where the stopping set

D ={(t,x):V(t,z) =G(t,x)}.
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Now consider the case when G is unbounded.
Theorem. Suppose that G is continuous for ¢ < T and there exists a

set D° C D such that

sup (EG(t + ¢, W, +z) — G(t,z)) < +o0,

x,t
TgTDO

E sup |G(t+ s, W, +1z)| <ooforanyz € R, t >0.

s<TD
Then the function V (t,z) — G(t, ) is finite and

™ =inf{s > 0: V(t + s Ws+x) — G(t + s, Wy + ) = 0}.
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In the Chernoff problem
V(t,a) = inf BG(t+mW,+2),  G(ta)= —_—

We check that the conditions of the theorem hold for

Do={(te): o> -0}
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The function

Cc

Vit,z) - G(t,x) = inf E|———— — |W, + 2 77+’x|

r<i-t  |[1—(t+7)

is non-decreasing for t > 0 and x > 0. Therefore,

D(z) = {(t, ) : |z > a(t)}

where a(t) is non-increasing some function on [0, 1] such that

a(t) < 201 —¢).

Mow

It can be proved that a is continuous .
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Let F(t,x) = V(t,x) — G(t,z). Applying the Ito formula with local
time on curves,

EF(L,Wi_t+z) = F(t,z)

1t
—i—E/ (F{ + F))(t+ s, Ws + 2)I{W, + x # +a(t + s) }ds
0

1—t
+ E/ FL(t+ 5, Ws + 2)I{Ws + 2 £ +a(t + 5)}dIV,
0

1 1—t
+ 5B AF! (t +s,a(t 4+ ) I{W, + 2 = a(t + 5) }dL*")
0
1 1-t
+ §E AF! (t+5,—a(t + s))I{W, + x = —a(t + s)}dL7°0),
0

Then we take z = a(t).
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The Kiefer—-Weiss problem

We observe the process
Xt = ,LLt + Bta

where p is an unknown real parameter.

For given ¢ > 0, a € (0,1/2) define the class A, . of decision rules
(7,d) such that

P(d # sgn(u) | p = u) < a for any |u| > €.
The Kiefer—-Weiss problem:

supE(7 | p = u) ———— min
u€R (Tyd)erz,s
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Known results

Lai showed that in the Kiefer-Weiss problem
™ =inf{t > 0:|X¢| = a*(t)}, d* = sgn(X;+)

He obtained an estimate of the growth rate of a*(t) when t — co.
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Theorem

An optimal stopping time (7%, d*) in the Kiefer—Weiss problem is
T =inf{t > 0:|X¢| = a*(t +10)}, d* =sgn X,

where a*(t) > 0 is a non-increasing function on R, being the unique
solution of the integral equation

exp(—cea(t)—et/2) = / [@4(a(s+t)—a(t)—Ps(—a(s+t)—a(t))]ds
0
in the class of continuous function a(t) on R, satisfying the inequality

0<a(t)<ee <%/2,  teR.

The quantity tg = to(«) is found from the equation P(d*(tg) =1 | pn =
—€) =a.
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Numerical results

The optimal stopping boundary a*(t).

a*(t)
0
|

20/27



Left: the dependence of the probability v of a wrong decision on the

value of tg.

Right: the dependence of the maximal average observation time E07*

on tg.
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Outline of the proof

The problem is reduced to the family of problems V, ¢ > 0:

Vo= inf [B(r| p=0)+e{P(d=—1| p=2) + Pld=1] u=2)}]

If for ¢ > 0 the optimal decision rule §. = (7¢,d.) for V. is such that
Pld.=-1|p=¢)=Pld.=1|p=—¢)=aq,

then 6¢ is optimal in the Kiefer—Weiss problem.
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Using that d(Py | u = u)/d(Py | p = u) = exp(uX; —u?t/2), we obtain

Vo= inf E[r + c(eX5 21 {d = —1}

e T2 d = 1)) | = 0]
This implies that the optimal decision rule (7., d.) is such that
de = sgn X,
and 7. solves the optimal stopping problem
V. = irTle[T 4 cemelXrl=et/2 ), o 0].

The constant ¢ = ¢(«) is found from the condition

P(X;,, >0|p=—¢)=qa.
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Fractional Brownian motion case

Suppose we observe the process
X; = ut + BE, t>0,

where B is a fractional Brownian motion with Hurst index H, [ is an
unknown drift coefficient.

We consider the problem of sequentially testing the hypotheses
Hi :p>0and H_: p < 0.
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Integral transform

It is known that process
t
Mt(BH) _CH/ 1/2— H( )1/2 HdMH
0

with normalizing constant ¢y is P-a.s. well defined for all values of H €
(0,1) and turns out to be a martingale with respect to the natural
filtration and has quadratic variation equal to

(M(BM)), = 2721,

where

B I'(3—2H) 1/2
o= <2HF(3/2 “H)T(1/2 + H))
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Reduction of the problem
Process .
Mt(X) — CH/ 1/2— H( )1/2 HdX
0
can be rewritten as

My(X) = My(BY) 4 by put®> 24

or
My(X) = My(B") + bgp(M(B™)),

with by = CHB(3/2 —H,3/2 — H)
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Equivalent problem

The process
By = Mye-2m (B™),

is a standard Brownian motion and
X{ = Mu/e-2m(X) = By + p't

is a Brownian motion with drift x4/ = by pu.
But the payment becomes nonlinear

T7 = 7'1/(272H).
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