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Introduction

Suppose we observe the process

Xt = µt+Bt, t > 0,

where B is a Brownian motion, µ is an unknown drift coefficient.

We consider the problem of sequentially testing the hypotheses

H+ : µ > 0 and H− : µ < 0.
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Outline

1. The Chernoff problem

2. Optimal stopping problems with unbounded pay-off functions

3. The Kiefer-Weiss problem

4. FBm case
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The Chernoff problem

Assumption: µ ∼ N (0, σ2
0) and is independent of B.

A decision rule is a pair (τ, d):

– τ is a stopping time of X

– d is an Fτ -measurable function, d(ω) ∈ {−1, 1}

The Chernoff problem

E
[
cτ + k|µ|I(d 6= sgn(µ))

]
−−−→
(τ,d)

min,

where c, k > 0 are constants; without loss of generality c = k = 1.
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Known results

Chernoff and Breakwell: the optimal decision rule is

τ∗ = inf

{
t > 0 : |Xt| > b∗

(
t+

1

σ2
0

)}
, d∗ = sgn (Xτ∗)

where b∗(t) is some function on R+.

They found its asymptotics for t→ 0, t→∞ (σ0 →∞, σ0 → 0).
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Solution of the Chernoff problem

Fix σ0 and introduce the process W = (Wt)06t61,

Wt = σ0(1− t)X t

σ20(1−t)
,

which is a Brownian motion.
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Theorem

The solution of the Chernoff problem is

τ∗ =
τ ′∗

σ2
0(1− τ ′∗)

, d∗ = sgn(Xτ∗).

where
τ ′∗ = inf{0 6 t 6 1 : |Wt| > a∗σ0(t)},

and a∗σ0(t) : [0, 1]→ R+ is a non-increasing function which is the unique
solution of the equation (with some concrete function H)

(1−t)H(1−t, a(t)) =

∫ 1

t

1
σ3
0(1−s)2

[
Φ
(
a(s)−a(t)√

s−t

)
− Φ

(
−a(s)−a(t)√

s−t

)]
ds

in the class of continuous functions a(t) satisfying the property

0 < a(t) 6
σ3

0

4
(1− t) for t < 1.
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H(t, x) =
1√
t
ϕ(x/

√
t)− |x|

t
Φ(−|x|/

√
t)).
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The optimal stopping boundaries

Left: the boundary a∗1(t) for the process W .
Right: the boundary b∗(t) for the process X.

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.6

−
0
.3

0
.0

0
.3

0
.6

t

a
*
(t

)

0 1 2 3 4 5
−

0
.6

−
0
.3

0
.0

0
.3

0
.6

t

b
*
(t

)

8/27



Remarks

1. τ ′∗ is the solution of the problem

V = inf
τ ′61

E

[
c

1− τ ′
− |Wτ ′ |

]
, c = 2/σ3

0,

2. As it follows from the construction of W ,

b∗(t) = σ0t · a∗σ0

(
1− 1

σ2
0t

)
, t >

1

σ2
0

.
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Outline of the proof

For the average penalty we have

E
[
τ + |µ|I(d 6= sgn(µ))

]
= E

[
τ + E(µ− | Fτ )I{d = +1}+ E(µ+ | Fτ )I{d = −1}

]
.

Thus the problem is equivalent to

E (τ) := E
[
τ + min

{
E(µ− | Fτ ), E(µ+ | Fτ )

}]
−→
τ

min .

Compute the conditional expectations:

E (τ) = E[τ +H(τ + 1/σ2
0, Xτ )]

with the function

H(t, x) =
1√
t
ϕ(x/

√
t)− |x|

t
Φ(−|x|/

√
t)).
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Applying the Itô formula, we obtain

E (τ) =
σ0

2
E

[
τ − |Xτ |

σ0(τ + 1/σ2
0)

]
+H

(
1/σ2

0, 0
)
.

Then we check that

Mt =
Xt

σ0(t+ 1/σ2
0)

is a martingale.

Applying the change of time, we find that

Wt = M t

σ20(1−t)
is a Brownian motion,

which reduces the Chernoff problem to the optimal stopping problem

V = inf
τ ′61

E

[
2

σ3
0(1− τ ′)

− |Wτ ′ |
]
.
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Auxiliary results: unbounded optimal stopping problems

Consider a Markovian optimal stopping problem

V (t, x) = inf
τ6T−t

EG(t+ τ,Wτ + x).

Suppose that

G is bounded from above

E sup
s>0
|G(t+ s,Ws + x)| <∞ for any x ∈ R, t > 0.

Then the solution of the optimal stopping problem exists and

τ∗ = inf{s > 0 : (t+ s,Ws + x) ∈ D}

where the stopping set

D = {(t, x) : V (t, x) = G(t, x)}.
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Now consider the case when G is unbounded.

Theorem. Suppose that G is continuous for t < T and there exists a
set D0 ⊂ D such that

sup
x,t

τ6τD0

(
EG(t+ t,Wτ + x)−G(t, x)

)
< +∞,

E sup
s6τD0

∣∣G(t+ s,Ws + x)
∣∣ <∞ for any x ∈ R, t > 0.

Then the function V (t, x)−G(t, x) is finite and

τ∗ = inf{s > 0 : V (t+ s,Ws + x)−G(t+ s,Ws + x) = 0}.
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In the Chernoff problem

V (t, x) = inf
τ61−t

EG(t+ τ,Wτ + x), G(t, x) =
c

1− t
− |x|.

We check that the conditions of the theorem hold for

D0 =

{
(t, x) : |x| > σ2

0

4
(1− t)

}
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The function

V (t, x)−G(t, x) = inf
τ61−t

E

[
c

1− (t+ τ)
− |Wτ + x|

]
− c

1− t
+ |x|

is non-decreasing for t > 0 and x > 0. Therefore,

D(x) = {(t, x) : |x| > a(t)}

where a(t) is non-increasing some function on [0, 1] such that

a(t) 6
σ2

0

4
(1− t).

It can be proved that a is continuous .
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Let F (t, x) = V (t, x) − G(t, x). Applying the Ito formula with local
time on curves,

EF (1,W1−t + x) = F (t, x)

+ E

∫ 1−t

0
(F ′t + F ′′xx)(t+ s,Ws + x)I{Ws + x 6= ±a(t+ s)}ds

+ E

∫ 1−t

0
F ′x(t+ s,Ws + x)I{Ws + x 6= ±a(t+ s)}dWs

+
1

2
E

∫ 1−t

0
∆F ′x(t+ s, a(t+ s))I{Ws + x = a(t+ s)}dLa(·)

s

+
1

2
E

∫ 1−t

0
∆F ′x(t+ s,−a(t+ s))I{Ws + x = −a(t+ s)}dL−a(·)

s ,

Then we take x = a(t).

16/27



The Kiefer–Weiss problem

We observe the process
Xt = µt+Bt,

where µ is an unknown real parameter.

For given ε > 0, α ∈ (0, 1/2) define the class ∆α,ε of decision rules
(τ, d) such that

P(d 6= sgn(u) | µ = u) 6 α for any |u| > ε.

The Kiefer–Weiss problem:

sup
u∈R

E(τ | µ = u) −−−−−−−→
(τ,d)∈∆α,ε

min
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Known results

Lai showed that in the Kiefer-Weiss problem

τ∗ = inf{t > 0 : |Xt| > a∗(t)}, d∗ = sgn(Xτ∗)

He obtained an estimate of the growth rate of a∗(t) when t→∞.
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Theorem

An optimal stopping time (τ∗, d∗) in the Kiefer–Weiss problem is

τ∗ = inf{t > 0 : |Xt| > a∗(t+ t0)}, d∗ = sgnXτ∗ ,

where a∗(t) > 0 is a non-increasing function on R, being the unique
solution of the integral equation

exp(−εa(t)−ε2t/2) =

∫ ∞
0

[
Φs(a(s+t)−a(t))−Φs(−a(s+t)−a(t))

]
ds

in the class of continuous function a(t) on R, satisfying the inequality

0 < a(t) 6 εe−ε
2t/2/2, t ∈ R.

The quantity t0 = t0(α) is found from the equation P(d∗(t0) = 1 | µ =
−ε) = α.
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Numerical results

The optimal stopping boundary a∗(t).

−10 −5 0 5

−
4

−
2

0
2

4

t

a
*
(t

)

20/27



Left: the dependence of the probability α of a wrong decision on the
value of t0.

Right: the dependence of the maximal average observation time E0τ∗

on t0.
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Outline of the proof

The problem is reduced to the family of problems Vc, c > 0:

Vc = inf
(τ,d)

[
E(τ | µ = 0) + c{P(d = −1 | µ = ε) + P(d = 1 | µ = −ε)}

]
.

If for c > 0 the optimal decision rule δc = (τc, dc) for Vc is such that

P(dc = −1 | µ = ε) = P(dc = 1 | µ = −ε) = α,

then δc is optimal in the Kiefer–Weiss problem.

22/27



Using that d(Pt | µ = u)/d(Pt | µ = u) = exp(uXt−u2t/2), we obtain

Vc = inf
(τ,d)

E
[
τ + c

(
eεXτ−ε

2τ/2I{d = −1}

+ e−εXτ−ε
2τ/2I{d = 1}

)
| µ = 0

]
.

This implies that the optimal decision rule (τc, dc) is such that

dc = sgnXτc

and τc solves the optimal stopping problem

Vc = inf
τ

E
[
τ + ce−ε|Xτ |−ε

2τ/2 | µ = 0
]
.

The constant c = c(α) is found from the condition

P(Xτc > 0 | µ = −ε) = α.
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Fractional Brownian motion case

Suppose we observe the process

Xt = µt+BH
t , t > 0,

where BH is a fractional Brownian motion with Hurst index H, µ is an
unknown drift coefficient.

We consider the problem of sequentially testing the hypotheses

H+ : µ > 0 and H− : µ < 0.
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Integral transform

It is known that process

Mt(B
H) = cH

∫ t

0
s1/2−H(t− s)1/2−HdMH

s ,

with normalizing constant cH is P-a.s. well defined for all values of H ∈
(0, 1) and turns out to be a martingale with respect to the natural
filtration and has quadratic variation equal to

〈M(BH)〉t = t2−2H ,

where

cH =

(
Γ(3− 2H)

2HΓ(3/2−H)3Γ(1/2 +H)

)1/2

.
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Reduction of the problem

Process

Mt(X) = cH

∫ t

0
s1/2−H(t− s)1/2−HdXs

can be rewritten as

Mt(X) = Mt(B
H) + bHµt

2−2H

or
Mt(X) = Mt(B

H) + bHµ〈M(BH)〉t
with bH = cHB(3/2−H, 3/2−H).
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Equivalent problem

The process
Bt = Mt1/(2−2H)(BH),

is a standard Brownian motion and

X ′t = Mt1/(2−2H)(X) = Bt + µ′t

is a Brownian motion with drift µ′ = bHµ.

But the payment becomes nonlinear

τ → τ ′ = τ1/(2−2H).
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Thank you


