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Statistical problem

This talk is connected with nonparametric estimation of the function s(t)
as the observation process y(t) is given by

dy(t) = s(t)dt + dx(t),t € |-T,T].

Here unknown function s lies in a compact subset %, of the Banach space .

with the norm || - ||z,
rx+1

Jslz =sup [ Is(0) (1

The noise process z(t) is the gaussian process with stationary increments with
zero mean and with the spectral density f.

For a suitably chosen countable set ¥ of functions v, suppvy € [-T,T], we
consider a discrete version of the statistical problem as we observe

0] = [s, 9] + |z, 9], ¥ € 7, (2)



where
[y, v] = / D00 dy(t), [5.9] = / D) s(8) dt, [v,9] = / 000 da(2),

For an estimator s of unknown function s we denote

Ry (5r, f) = sup E, |5 — s,
seE L.

and by Zr (f) we denote the minimax risk,

%r (f) =inf sup Eg s [|57 — s||% .
ST SEX*

One of the problems that we plan to discuss is how to choose in a reasonable
way a system W of functions 9 so as not to lose much in the rate of decrease
in risk Ry (ST, f), as we assume that the spectral density f is unknown.



Stationary process and orthogonal projection operator

Let x(t) be a gaussian process with zero mean E z(¢) = 0 and stationary
increments. We use the notation

o

2lg] = / o (1) dac(t).

— o0

The linear operator x|p] is defined in the usual way on the indicator functions:

z (1jay)] = 2(b) — z(a),

and well defined on linear span .S of all such functions. The expected value of
2 [¢]]” does not depend on the shift operator:

E |z [p(-)]I” = E |a (- + ]I,

and therefore there exists a nonnegative measure p such that

E |z [p / 32 d. (3)
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Here (u) is the Fourier transform of ¢,

oo

B(u) = / (1) dt,

— OO

and the spectral measure u satisfies to the condition

O

/ pldu)

1+ u?

— OO

We assume that process x has the spectral density f. This means that
2 ~ N2
Elolel’ = [ 18] f(u)du.
For a nonnegative function f which is defined on R, denote by L?g the Hilbert
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space with the inner product (-,-)s and the norm |-|| Iy

oo

(ishz)y = [ o (haw) F() du, (B = (BB,

— OO0

In the case as f = 1, we use the notation L? instead of L%, and (-,-), |||

instead of (-, )1, |||l;-
The linear operator x|p] defined on S can be extended to Zy,
@f:{gpz @EL%OC,QEL?}, (4)
where L? is the set of locally square summable functions. Denote H(z) the

subspace of the space L?(dP) generated by random variables z[p], ¢ € Z;.
The relation

malp] =@
determines an isometry 7 : H(zx) — L?c. This allows to translate many of

the problems of geometry in the space H(x) into the appropriate analytical
problems in the space L.
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Orthoprojector on H,(z) in the space L*(dP)

Denote H,(x) the subspace of the space H(x) generated by random vari-
ables x|y, supp ¢ € [=T,T]. The subspace of the space L?« corresponding to
the mapping 7 is denoted by J2.(f) : 7 (f) = m Hx(x). In the case as

[ fu

1_1_u20l’u,<oo

— OO

the subspace 7,.(f) = m Hy(x) coincides with the closure of the linear span
of the set

bu au

1 — tu L
{ ue , |t < T} since T x [1[a,b]] _ £ ue

Denote P.(f) the orthoprojector (in the metric of the space L?(dP) ) onto
H,(x). Let Z,(f) be the orthoprojector on 7, (x) in the space L?c. It is very
difficult to construct the analytical representation of the operators Pr(f) or
P (f) for general spectral density f.
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But in the case as f = 1 the process x(t) is a process with orthogonal
increments. Therefore for any random variable &,

— / @(t) dx(t), we have Pr(f)& = / p(t) du(t) =« |:1[T,T]S0j| '

In other words in the case as f =1 for the process x [¢], ¢ € Py,

Pr(f)zlel = Prale] =2 |1, 0| = (1, 42) 4. (5)

It is easy to see that in this case

o

P (F)h (V) = P b (v) = /

— 0

sinT'(v — )

(v — u)

h(u) du. (6)

The problem that will interest us in this section is the following: under
what conditions on spectral density f the operator P, gives a good approxi-
mation for the operator Pr(f).
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More precisely, we want to find conditions on the spectral density f for
which

E (z[¢] — Prafy])” < CE (z[¢] - Po(f) z[0])” (7)
with constant C' = C'(f) which depends only on f.

Clearly, that

E (z[¢] — Przly])’ > E (z]¢] — Pr(f) z[¢])”.

Passing to the operator norm |||z 4py in space L?(dP), we must find out
when

I = Prllp2qpy < CUF) I = Pr(f)ll 2 apy = C(F). (8)
Evidently, we must find out when
HPTHL2(dP) <c(f), (9)

with constant ¢(f) which depends only on f.
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Orthoprojector on 7. (f) in the space L?e

Now we want to move to the corresponding analytic problem in the space
I2.
We recall that

Hence,
TPt = Db (v) = / Sij?;}(:)“) h(w) du. (10)

Since the operator P, (acting in space L?*(dP)) and the operator £, (acting
in space L?c) are unitarily equivalent, then the condition (9) (described in the
previous section) are equivalent to the condition

| P2l < e(F), (11)

where ||-|| L2 is the operator norm in the space L?«.
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We use notation H _2F for the Hardy space of analytic functions in the upper
half-plane. For our purposes, we can think that H? is the subspace of the
space L? which consists of functions g which is representable in the form

g(u) = / e (1) dt.

For ¢ > 0 we denote by HZ (t) the subspace of the space L? which consists of
functions g which is representable in the form

Let PT be the operator of orthogonal projection in L? onto HJQF, PT(t) be
the operator of orthogonal projection onto Hz (t), P~ =1 — P™.
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Recall that the operator &,

B OOsinT(v—u) 2 du
;@Th(v)_é L ) du

is the operator of orthogonal projection (in the metric of the space L?) onto
subspace 7, which consists of functions g which is representable in the form

g(u) = / et (1) dt.

Let ¢; be the operator of multiplication by the function €;(u) = €. It is clear,
that PT(2T) = e, Z€e_,. Since operators PT(2T) and £, are unitarily
equivalent in the space L?c, for any nonnegative function f, then the condition
(11) is equivalent to the condition

sup HPjL(QT)HL2 < 00. (12)
T>0 !
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0-12
From the last condition we obtain that
|P*l,; < o (13
f
and using the equality
P+(2T) = ey P~ €_op = €97 (I — P+) €_oT,
we deduce that (12) and (14) are equivalent.

Let H denote the Hilbert transform,

The operator H admits the representation

H=—iPT +iP™ =il +2iP™.
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The question we are interested here is under what condition on f the operator
H is bounded in the weighted space L7.

The answer is well known. The famous Hunt-Mackenhoupt-Wheeden the-
orem (1973) says that the Mackenhoupt condition

1
sup |I\/f dum mdu<oo

is necessary and sufficient for the boundedness of H in weigthed space.

Since H = i1 — 2P, then the Mackenhoupt condition is is necessary and
sufficient for the boundedness of operator P™ in weighted space, and therefore
for the uniform on 7" > 0 boundedness of the operators &2, in weighted space
L%. Recall that the operator Py (acting in space L*(dP)) and the operator &y,

acting in space L%) are unitarily equivalent. We obtain the following theorem.
f y
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Theorem. Let x be a process with stationary increments with spectral density
f. Then

E (z[¢] - Przl¢])” < CE (zlp] — Pr(f) 2[e])”, (14)

with constant C' = C(f) which depends only on f if and only if the spectral
density f satisfies to the Mackenhoupt condition.
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Statistical data

Throughout the talk we consider nonparametric estimation of the function
s(t) as the observation process y(t) is given by

dy(t) = s(t)dt + dx(t),t € [-T,T].

Here unknown function s € %, C .Z, where . is the Banach space with the

norm || - ||z, »
€T

HSH% — sup / |5 () |2 dt < 0. (15)

X
x

As the parametric set .Z, we take .2, = Z(A; 3), where Z(A; ) is the subset
of the Stepanov class .Z(A) of pseudoperiodic functions

s(t) = a(we™, Y la(u)® < oo, (16)

ueEAN ucA
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0-16
which is defined by the condition
> A+ [u)*Pla()P < C, (17)
ueN

A is a countable subset of real line such that

k= kK(A) = ) inerlfu;év lu —v| > 0. (18)

That is we assume that different points of the spectral set A are uniformly
separated. Under this condition in the subspace -Z(A) of the Banach .Z there

are two Hilbert norm which are topologically equivalent to the original norm
| - ||.z. Namely, for function s € Z(A),

denote

1
IslI2 =D la@)?, [Islf: = 5= [ [s(t)dt.
2T

ueA
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R. Paley, N. Wiener (1932) proved that, for s € Z(A), k(A) > 0,
cillsll« < [lsllz < Cills]+, (19)

and, for T > Ty(k),
colsllz < |lslle < Cals|z (20)

Here c1, ¢y, C1, Cy — positive constant depend only on k = k(A).

For some technical reasons it is more convenient to investigate the accuracy
of the estimation in the norm || - ||.. For an estimator s7 of unknown function
s we denote

sk A~ A~ 2
RT (3T§6§f) — Sup Es,fHST_SH*a
SED%*

and by Z;. (B; f) we denote the minimax risk,

* . ~ 2
Zr (B; f) =inf sup Eg ¢ |[s7 — s|/’y .
ST SEE;ZQ

It is clear that, under the condition k(A) > 0,
c Ry (57385 f) < Ry (57383 f) < C Ry (81385 f) (21)
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and
cHy (B; f) < %r (B; f) < C %7 (B; f) (22)
Here constants ¢, C depend only on . Recall, that Ry (s7;8; f), %1 (B; f)

are risk and minimax risk, as we measure the accuracy of the estimation in
the norm || - || .

Let L2 be the L*—space on the interval [T, T] constructed by the nor-
malized Lebesque measure, and || - ||, (:,-), are the norm and scalar product
in L2.

Below we use the notation

:%/TTW@@), zT/ D00 s(t) dt, z]p / B0 dat

We want to choose in a optimal way a countable set ¥ and continue estimating
in a discrete scheme, as we observe

yl] = sldl + 2], ¥ € ¥,

and try to construct an estimator s for unknown s € .Z on data {y[¢], ¥ € U}.
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Denote ¢, (t) = ¢*“!. Introduce the countable set of function
¢ = {pyu, u € A}. The system & is the Riesz basis of the subspace .Z(A)
(more precisely the restriction of a subspace .Z(A) on interval [T, T]) in the
metric of the space L2). There is the conjugate system W, = {1, u € A},
which is defined by

(qua %)T — 5u,v-

Therefore, for function s(t) = Y a(u)e“!,
ueN

(8,%u), = alw).

Therefore,
y[u] = a(u) + z Y], ue A (23)

It should be noted that the functions v,, = ¢, depend on 7" and the system
U, is uniquely determined only if we require that

@DZEZL ]g(A),’LLEA

[—T,T
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In this case, under condition x(A) > 0, the following inequality holds

[ llz < C(x).
On observations
ylu] = alu) + ], ue A (24)
we will construct an estimate a; = (ar(u), u € A) of the coefficient vector

a= (a(u), u € A), and then will construct an estimate

So(t) =) ar(u)e™,

ueA
using a priori information that
> Ja(u)]® (1 + u])* < C. (25)
ueA
Since ||s — 5| = |[ar — al|3 :== Y |ar(u) — a(u)|?, we have almost the

ue
same statistical problem as the initial one.
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However, with a small loss of information: we do not use observations y[v],

as s[y] =0, for all s € Z(A).

We denote the minimax risk R, (5; f) in the problem of estimating the
vector a described above, and give the conditions under which the loss of in-
formation mentioned above will not be catastrophic.

Theorem. Suppose that K(A) > 0, 8 > 0, and the spectral density f of
process x satisfies to the condition

1
AS) = sup W / f(u alu‘T| mdu < 0. (26)
Then
Rr(B; f) < %r(B; f) < CR(B; f), (27)

where positive constants ¢, C' depend only on x(A), A(f).
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Discrete model

Let us consider in detail the problem of estimating an unknown vector
a= (a(u), u € A) from observations

Yo =a(u)+ X,, u€ A, acO. (28)

Here X = (X,, u € A) is a gaussian vector with zero mean and EX, = o2.

Denote o = (02, u € A) and let Z(0;0) be the mimimax risk.

u’?

In the case that interests us the set © is defined by

> la(@)? (1 + [u))* < C; (29)
ueA
Xy =z [1p.], where the system ¥ = {¢], u € A} (30)
is defined by
) T
T T —vt —
o7 / Y, (1) e dt = 0y,
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and the Gaussian process x has zero mean and spectral density f. So, the
random variables X,, are gaussian with zero mean and

2 . 2 x 2
o2 :=EX? = 4T2/y,§ )|? dz.

The case, when {X,, u € A} are independent Gaussian variables, and ©

is compact centrally symmetric subset of the space [? was well investigated
( I. Ibragimov and R. Hasminskii (1984), D. Donoho and all (1990)). The pos-
sibility of transition to dependent variables is given by the following lemma

which belong to S. Reshetov.

Lemma 1. Let X = (X, u € A) be a Gaussian vector with zero mean. Sup-
pose that there exists a constant ¢(X ) such that for any finite set {a(v), v € A}

E X, - ) a@)X,]>cX)B|X,” (31)
VFEU
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Then there exists a constant C' > 0 which depend only on ¢(X) that
C> 1iNop <X (O;0) (32)
ueA

Choice of conjugate system

Note that if kK(A) > 0, then, for T" > Tj, the operator of multiplication
by the indicator function 1;_7 1) (¢) Is a bounded and boundedly invertible
operator from .Z(A) (considered as a subspace of a Banach space .Z’) into the
subspace of space L2, which defined by £ (A) = 1_71-Z(A). In the future,
it will be convenient for us to assume that all functions from L2 are equal to
zero outside the interval =T, T].

We use the notation
wu(T5t) = | N (t) etut,

Let {gr, u € A} be the system, from the space .Z.(A), which is conjugate to
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the system {@,(7;-), u € A}. That is

r

/gu( )e Wt dt = 216, , if v € A.
For a fixed r > Ty and T > r, we define the new system {7, u € A} by

G0 = g [ L= euT —ri9ds (33)

— OO

Lemma 2. Functions ¥ € L2, and, for v € A,

T
1 .
o7 / It e dt = 5, (34)
—T
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Class 7 of spectral densities

For a > —1, 8 > 1 and 0 < b < B, we introduce the class A(«, 8;b, B) of
spectral densities by the conditions

> felu) (T Jul)?

o _ u€A, ful<m 1 a
be® < S AT N > fe(w)<Be*.  (35)
we. [u|<m uel, lu|<m

Here N(m) is the number of points from A, contained in the interval |[—m, m].

Class of spectral densities # = # («a, 5;b, B); A) Is distinguished from the
class A(a, B;b, B) be the condition

A(f) £ X < oo (36)
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Condition on spectral set A

We assume that
k(A)= inf |u—wv[>0
u,VEN, u#v
and points of the spectral set A in the following sense regular distributed over
large intervals [—m, m/|: for positive ¢ and m > my,

m?PT <N (L Jul)? (37)

u€A, [u|<m

The class of such spectral sets will be denoted by Z(5; k)
Asymptotically optimal estimate

Let the estimator s, is defined by

Sy = > ar(u), (38)

ueZ,|u|<m(T)

dto ~ . . . .
where m(T) = T7+28 | and a,(u) is unbiased estimator of the coefficient a(u),

ar(u) = ylby, ],
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which is constructed on the specially selected the conjugate system ¥ =

{ar(u), ue A},

o

ZT(TT— r) / g’Z(t o S) Spu(T — T S) ds.

— OO

thy, () =

Theorem. Suppose unknown function s € Z(A; ), x Gaussian process with
zero mean and spectral density f € A(a, 8;b, B), spectral set A belongs to the
class #(5; k). Then, for positive constant ¢, C,

(1+a)(28)

CRT(jS\T;ﬁ) S %T(ﬁ) S CT 125 (39)
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Vector valued stationary process

Let f be a dxd matrix weight, that is a function on real line R whose values
are selfadjoint nonnegative matrices. We define a weighted space L*(f) as the
space of all measurable C?-valued functions on R satisfying to the condition

oo

l9ll o) = / (f(u)g(u), g(w)) du < oo. (40)

— OO

We will use the notation L?(C?%), as f is identity matrix. So, L?(C?) is the
space of square summable functions on real line with values in C?. We de-
note H?(C%) the corresponding Hardy space of analytic functions. For our
purposes, we can think that H? is the subspace of L?(C%) which consists of
functions g = (g1, ..., gq) with coordinate which is representable in the form
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We shall use the same notation, as in the case d = 1. Let P, be the or-
thogonal projection in L? onto H?, P_. =1 — P — +.

Consider the Hilbert Transform,
S. Treil and A. Volberg proved (1995) that vector Muckenhoupt condition

/2 1/2
1 1 »
sup W f(u) du W f (u)du < 00. (41)
T I

1

1

is necessary and sufficient for the boundedness of Hilbert Transform H in
L?(f) with matrix weight.
Estimation problem in vector valued case

Now consider the case, as we observe vector valued process y(t) = (y1(t), y2(t))
which is given by

dyl (t) = Sl(t)dt -+ dZEl(t), t e [—T, T],
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dys (t) = S9 (t)dt + dxo (t), IS [—T, T],
Here unknown functions s; € Z,(j) C Z(A;), j =1,2,

Z,(7) is the subset of the Stepanov space -Z’(A;) of pseudoperiodic functions

s(t) = a(u)e™, defined by » (1+ [u)*¥|a(u)* <C,  (42)

u€EAN uEAN

The noise process x(t) = (x1(t), z2(t)) is the gaussian process with station-
ary increments with zero mean and with the spectral density f.

We consider the problem of estimating function s; with nuisance parame-
ters so, and denote by Zr(f) the minimax risk of this estimation problem.
More precisely, we consider a simple but non-trivial case when

flu) = - (43)
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Theorem . Suppose A1 N Ay =0, 81 = B2 = 3, spectral density f satisfies to
the vector Muckenhoupt condition. Then

Zr(f;8) < CRp(1— |p|*; B).
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