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Model of observations

Recall: X =
(
X(t), t > 0

)
is an (inhomogeneous) Poisson process

with intensity function λ (t), t > 0, if X0 = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P
{
X(t)−X(s) = k

}
=

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.
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Model of observations

Recall: X =
(
X(t), t > 0

)
is an (inhomogeneous) Poisson process

with intensity function λ (t), t > 0, if X0 = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P
{
X(t)−X(s) = k

}
=

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.

Observations: n independent realizations X(n) =
(
X

(n)
1 , . . . , X

(n)
n

)
of

a Poisson process with intensity function λ
(n)
ϑ (t), 0 6 t 6 τ .
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Model of observations

Recall: X =
(
X(t), t > 0

)
is an (inhomogeneous) Poisson process

with intensity function λ (t), t > 0, if X0 = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P
{
X(t)−X(s) = k

}
=

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.

Observations: n independent realizations X(n) =
(
X

(n)
1 , . . . , X

(n)
n

)
of

a Poisson process with intensity function λ
(n)
ϑ (t), 0 6 t 6 τ .

Unknown parameter: ϑ ∈ Θ = (α, β), 0 6 α < β 6 τ .
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Model of observations

Recall: X =
(
X(t), t > 0

)
is an (inhomogeneous) Poisson process

with intensity function λ (t), t > 0, if X0 = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P
{
X(t)−X(s) = k

}
=

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.

Observations: n independent realizations X(n) =
(
X

(n)
1 , . . . , X

(n)
n

)
of

a Poisson process with intensity function λ
(n)
ϑ (t), 0 6 t 6 τ .

Unknown parameter: ϑ ∈ Θ = (α, β), 0 6 α < β 6 τ .

Asymptotics: n→ ∞.
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Model of observations

Recall: X =
(
X(t), t > 0

)
is an (inhomogeneous) Poisson process

with intensity function λ (t), t > 0, if X0 = 0 and the increments of X

on disjoint intervals are independent Poisson random variables:

P
{
X(t)−X(s) = k

}
=

(∫ t
s
λ (t) dt

)k

k!
exp

{
−
∫ t

s

λ (t) dt

}
.

Observations: n independent realizations X(n) =
(
X

(n)
1 , . . . , X

(n)
n

)
of

a Poisson process with intensity function λ
(n)
ϑ (t), 0 6 t 6 τ .

Unknown parameter: ϑ ∈ Θ = (α, β), 0 6 α < β 6 τ .

Asymptotics: n→ ∞.

Remark: equivalent to periodic observation on [0, nτ ] and to one

observation on [0, τ ] with intensity function nλ
(n)
ϑ (t), 0 6 t 6 τ .
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.

(C3) We have rn → r ∈ R. If r = 0, we also suppose n r2n → +∞.
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.

(C3) We have rn → r ∈ R. If r = 0, we also suppose n r2n → +∞.

(C4) There exist some constants ℓ, L > 0 such that ℓ 6 λ
(n)
ϑ (t) 6 L for

all n ∈ N, ϑ ∈ (α, β) and t ∈ [0, τ ].
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.

(C3) We have rn → r ∈ R. If r = 0, we also suppose n r2n → +∞.

(C4) There exist some constants ℓ, L > 0 such that ℓ 6 λ
(n)
ϑ (t) 6 L for

all n ∈ N, ϑ ∈ (α, β) and t ∈ [0, τ ].

Remark:

(C1) – (C3) and r > − min
t∈[0,τ ]

ψ(t) =⇒ (C4) for n sufficiently large.
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.

(C3) We have rn → r ∈ R. If r = 0, we also suppose n r2n → +∞.

(C4′) We have r > − min
t∈[0,τ ]

ψ(t).
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Conditions

(C1) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψn(t) + rn1{t>ϑ}, where ψn is continuous on [0, τ ].

(C2) For all t ∈ [0, τ ], there exist lim
n→+∞

ψn(t) = ψ(t) > 0 uniformly

with respect to t.

(C3) We have rn → r ∈ R. If r = 0, we also suppose n r2n → +∞.

(C4′) We have r > − min
t∈[0,τ ]

ψ(t).

Remark:

(C1) – (C2) ⇐= (C0) The intensity function λ
(n)
ϑ (t) can be written

as λ
(n)
ϑ (t) = ψ(t) + rn1{t>ϑ}, where ψ > 0 is continuous on [0, τ ].
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Likelihood ratio

The measures corresponding to different values of ϑ are equivalent

(and also equivalent to the case λ ≡ 1).
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Likelihood ratio

The measures corresponding to different values of ϑ are equivalent

(and also equivalent to the case λ ≡ 1).

The likelihood is a (random) càdlàg function of ϑ ∈ (α, β):

Ln
(
ϑ,X(n)

)
= exp

{
n∑

j=1

∫

[0,τ ]

lnλ
(n)
ϑ (t) dX

(n)
j (t)− n

∫ τ

0

[
λ
(n)
ϑ (t)− 1

]
dt

}
.
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Likelihood ratio

The measures corresponding to different values of ϑ are equivalent

(and also equivalent to the case λ ≡ 1).

The likelihood is a (random) càdlàg function of ϑ ∈ (α, β):

Ln
(
ϑ,X(n)

)
= exp

{
n∑

j=1

∫

[0,τ ]

lnλ
(n)
ϑ (t) dX

(n)
j (t)− n

∫ τ

0

[
λ
(n)
ϑ (t)− 1

]
dt

}
.

The normalized likelihood ratio is a process with trajectories in D0(R):

Zn,ϑ(v) =
Ln

(
ϑv, X

(n)
)

Ln
(
ϑ,X(n)

) , v ∈ Θn =
(
ϕ−1
n (α− ϑ), ϕ−1

n (β − ϑ)
)
,

where ϑv
∆
= ϑ+ vϕn, and normalization rate ϕn = ϕn(ϑ) ց 0 suitably.
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Likelihood ratio

The measures corresponding to different values of ϑ are equivalent

(and also equivalent to the case λ ≡ 1).

The likelihood is a (random) càdlàg function of ϑ ∈ (α, β):

Ln
(
ϑ,X(n)

)
= exp

{
n∑

j=1

∫

[0,τ ]

lnλ
(n)
ϑ (t) dX

(n)
j (t)− n

∫ τ

0

[
λ
(n)
ϑ (t)− 1

]
dt

}
.

The normalized likelihood ratio is a process with trajectories in D0(R):

Zn,ϑ(v) =
Ln

(
ϑv, X

(n)
)

Ln
(
ϑ,X(n)

) , v ∈ Θn =
(
ϕ−1
n (α− ϑ), ϕ−1

n (β − ϑ)
)
,

where ϑv
∆
= ϑ+ vϕn, and normalization rate ϕn =





1
|r|n

, if r 6= 0,
ψ(ϑ)
n r2n

, if r = 0.
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The processes Zρ and Z0

The process Zρ is a process with trajectories in D0(R) defined by

Zρ(v) =





exp
{
ρΠ+(v)− v

}
, if v > 0,

exp
{
−ρΠ−

(
(−v)−

)
− v

}
, if v 6 0,

where ρ > 0, and Π+ and Π− are two independent Poisson processes

on R+ of intensities 1/(eρ − 1) and 1/(1− e−ρ).
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The processes Zρ and Z0

The process Zρ is a process with trajectories in D0(R) defined by

Zρ(v) =





exp
{
ρΠ+(v)− v

}
, if v > 0,

exp
{
−ρΠ−

(
(−v)−

)
− v

}
, if v 6 0,

where ρ > 0, and Π+ and Π− are two independent Poisson processes

on R+ of intensities 1/(eρ − 1) and 1/(1− e−ρ).

The process Z0 is a process with trajectories in C0(R) ⊂ D0(R) defined

by

Z0(v) = exp

{
W (v)− |v|

2

}
,

where W is a standard two-sided Brownian motion (Wiener process).
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Limit of the normalized likelihood ratio
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) – (C4) be fulfilled. Then,

uniformly in ϑ on any compact set K ⊂ Θ, the process Zn,ϑ converges

weakly in the space D0(R) to
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) – (C4) be fulfilled. Then,

uniformly in ϑ on any compact set K ⊂ Θ, the process Zn,ϑ converges

weakly in the space D0(R) to

the process Zρ with ρ = ln ψ(ϑ)
ψ(ϑ)+r

, in the case r < 0,
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) – (C4) be fulfilled. Then,

uniformly in ϑ on any compact set K ⊂ Θ, the process Zn,ϑ converges

weakly in the space D0(R) to

the process Zρ with ρ = ln ψ(ϑ)
ψ(ϑ)+r

, in the case r < 0,

the process Z ′
ρ with ρ = ln ψ(ϑ)+r

ψ(ϑ)
defined by

Z ′
ρ(v) = Zρ

(
(−v)−

)
, in the case r > 0,
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) – (C4) be fulfilled. Then,

uniformly in ϑ on any compact set K ⊂ Θ, the process Zn,ϑ converges

weakly in the space D0(R) to

the process Zρ with ρ = ln ψ(ϑ)
ψ(ϑ)+r

, in the case r < 0,

the process Z ′
ρ with ρ = ln ψ(ϑ)+r

ψ(ϑ)
defined by

Z ′
ρ(v) = Zρ

(
(−v)−

)
, in the case r > 0,

the process Z0, in the case r = 0.
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Limit of the normalized likelihood ratio

Theorem. — Let the conditions (C1) – (C4) be fulfilled. Then,

uniformly in ϑ on any compact set K ⊂ Θ, the process Zn,ϑ converges

weakly in the space D0(R) to

the process Zρ with ρ = ln ψ(ϑ)
ψ(ϑ)+r

, in the case r < 0,

the process Z ′
ρ with ρ = ln ψ(ϑ)+r

ψ(ϑ)
defined by

Z ′
ρ(v) = Zρ

(
(−v)−

)
, in the case r > 0,

the process Z0, in the case r = 0.

Remark: in the case r 6= 0, the limit is the same as in the case of a

fixed jump size (rn ≡ r) studied by Kutoyants (1984, 1998)
(
see also

Dachian, Kutoyants, Yang (2015) for hypotheses testing
)
.
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Parameter estimation

The maximum likelihood estimator (MLE) ϑ̂n is defined by

max
{
Ln

(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}
= sup

ϑ∈(α,β)

Ln
(
ϑ,X(n)

)
.
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Parameter estimation

The maximum likelihood estimator (MLE) ϑ̂n is defined by

max
{
Ln

(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}
= sup

ϑ∈(α,β)

Ln
(
ϑ,X(n)

)
.

The Bayes estimator (BE) ϑ̃n (for square loss and) for a given prior

density p is defined by

ϑ̃n =

∫ β
α
ϑ p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

∫ β
α
p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

.
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Asymptotic efficiency

We introduce the random variables ξ and ζ by the equations

Z0(ξ) = sup
v∈R

Z0(v) and ζ =

∫ +∞

−∞
v Z0(v) dv∫ +∞

−∞
Z0(v) dv

.
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Asymptotic efficiency

We introduce the random variables ξ and ζ by the equations

Z0(ξ) = sup
v∈R

Z0(v) and ζ =

∫ +∞

−∞
v Z0(v) dv∫ +∞

−∞
Z0(v) dv

.

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.
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Asymptotic efficiency

We introduce the random variables ξ and ζ by the equations

Z0(ξ) = sup
v∈R

Z0(v) and ζ =

∫ +∞

−∞
v Z0(v) dv∫ +∞

−∞
Z0(v) dv

.

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, for any ϑ0 ∈ Θ, we have

lim
δ→0

lim
n→+∞

inf
ϑn

sup
|ϑ−ϑ0|<δ

n2r4n
ψ2(ϑ)

E
(n)
ϑ (ϑn − ϑ)2 > Eζ2,

where the inf is taken over all possible estimators ϑn.
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Asymptotic efficiency

We introduce the random variables ξ and ζ by the equations

Z0(ξ) = sup
v∈R

Z0(v) and ζ =

∫ +∞

−∞
v Z0(v) dv∫ +∞

−∞
Z0(v) dv

.

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, for any ϑ0 ∈ Θ, we have

lim
δ→0

lim
n→+∞

inf
ϑn

sup
|ϑ−ϑ0|<δ

n2r4n
ψ2(ϑ)

E
(n)
ϑ (ϑn − ϑ)2 > Eζ2 = 16 ζ(3) ≈ 19.23,

where the inf is taken over all possible estimators ϑn.
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Asymptotic efficiency

We introduce the random variables ξ and ζ by the equations

Z0(ξ) = sup
v∈R

Z0(v) and ζ =

∫ +∞

−∞
v Z0(v) dv∫ +∞

−∞
Z0(v) dv

.

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, for any ϑ0 ∈ Θ, we have

lim
δ→0

lim
n→+∞

inf
ϑn

sup
|ϑ−ϑ0|<δ

n2r4n
ψ2(ϑ)

E
(n)
ϑ (ϑn − ϑ)2 > Eζ2 = 16 ζ(3) ≈ 19.23,

where the inf is taken over all possible estimators ϑn.

Definition. — We say that an estimator ϑ∗
n is asymptotically efficient if

lim
δ→0

lim
n→+∞

sup
|ϑ−ϑ0|<δ

n2r4n
ψ2(ϑ)

E
(n)
ϑ (ϑ∗

n − ϑ)2 = Eζ2 = 16 ζ(3),

for all ϑ0 ∈ Θ.
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations

ϑ̂n
P−−→ ϑ (convergence in probability),
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations

ϑ̂n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̂n − ϑ) =⇒ ξ (convergence in law),
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations

ϑ̂n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̂n − ϑ) =⇒ ξ (convergence in law),

np r2pn
ψp(ϑ)

E
(n)
ϑ

∣∣ϑ̂n − ϑ
∣∣p −→ E |ξ|p for any p > 0.
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations

ϑ̂n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̂n − ϑ) =⇒ ξ (convergence in law),

np r2pn
ψp(ϑ)

E
(n)
ϑ

∣∣ϑ̂n − ϑ
∣∣p −→ E |ξ|p for any p > 0.

In particular, the relative asymptotic efficiency of ϑ̂n is

Eζ2

Eξ2
.
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Properties of the MLE

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the maximum likelihood estimator ϑ̂n satisfies,

uniformly on ϑ in any compact set K ⊂ Θ, the relations

ϑ̂n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̂n − ϑ) =⇒ ξ (convergence in law),

np r2pn
ψp(ϑ)

E
(n)
ϑ

∣∣ϑ̂n − ϑ
∣∣p −→ E |ξ|p for any p > 0.

In particular, the relative asymptotic efficiency of ϑ̂n is

Eζ2

Eξ2
=

16 ζ(3)

26
≈ 0.74.
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Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.
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Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the Bayes estimator ϑ̃n for any continuous strictly

positive prior density satisfies, uniformly on ϑ in any compact set

K ⊂ Θ, the relations
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Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the Bayes estimator ϑ̃n for any continuous strictly

positive prior density satisfies, uniformly on ϑ in any compact set

K ⊂ Θ, the relations

ϑ̃n
P−−→ ϑ (convergence in probability),

Asymptotical Statistics of Stochastic Processes (S.A.P.S.) XI – p.10/26



Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the Bayes estimator ϑ̃n for any continuous strictly

positive prior density satisfies, uniformly on ϑ in any compact set

K ⊂ Θ, the relations

ϑ̃n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̃n − ϑ) =⇒ ζ (convergence in law),
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Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the Bayes estimator ϑ̃n for any continuous strictly

positive prior density satisfies, uniformly on ϑ in any compact set

K ⊂ Θ, the relations

ϑ̃n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̃n − ϑ) =⇒ ζ (convergence in law),

np r2pn
ψp(ϑ)

E
(n)
ϑ

∣∣ϑ̃n − ϑ
∣∣p −→ E |ζ|p for any p > 0.
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Properties of the BEs

Theorem. — Let the conditions (C1) – (C4) be fulfilled with r = 0.

Then, as n→ +∞, the Bayes estimator ϑ̃n for any continuous strictly

positive prior density satisfies, uniformly on ϑ in any compact set

K ⊂ Θ, the relations

ϑ̃n
P−−→ ϑ (convergence in probability),

n r2n
ψ(ϑ)

(ϑ̃n − ϑ) =⇒ ζ (convergence in law),

np r2pn
ψp(ϑ)

E
(n)
ϑ

∣∣ϑ̃n − ϑ
∣∣p −→ E |ζ|p for any p > 0.

In particular, ϑ̃n is asymptotically efficient.
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Hypothesis testing

Problem: now Θ = [ϑ0, b) and we have to choose between

H0 : ϑ = ϑ0,

H1 : ϑ > ϑ0.
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Hypothesis testing

Problem: now Θ = [ϑ0, b) and we have to choose between

H0 : ϑ = ϑ0,

H1 : ϑ > ϑ0.

Tests: a (randomized) test ψ̄n = ψ̄n
(
X(n)

)
is defined as the probability

to reject the hypothesis H0.
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Hypothesis testing

Problem: now Θ = [ϑ0, b) and we have to choose between

H0 : ϑ = ϑ0,

H1 : ϑ > ϑ0.

Tests: a (randomized) test ψ̄n = ψ̄n
(
X(n)

)
is defined as the probability

to reject the hypothesis H0.

Size: we denote Kε the class of tests ψ̄n of asymptotic size ε ∈ [0, 1]:

Kε =
{
ψ̄n : lim

n→∞
E

(n)
ϑ0
ψ̄n

(
X(n)

)
= ε

}
.
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Hypothesis testing

Problem: now Θ = [ϑ0, b) and we have to choose between

H0 : ϑ = ϑ0,

H1 : ϑ > ϑ0.

Tests: a (randomized) test ψ̄n = ψ̄n
(
X(n)

)
is defined as the probability

to reject the hypothesis H0.

Size: we denote Kε the class of tests ψ̄n of asymptotic size ε ∈ [0, 1]:

Kε =
{
ψ̄n : lim

n→∞
E

(n)
ϑ0
ψ̄n

(
X(n)

)
= ε

}
.

Power: power function of ψ̄n is β(ψ̄n, ϑ) = E
(n)
ϑ ψ̄n

(
X(n)

)
, ϑ > ϑ0.
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Pitman’s approach

Close or contiguous alternatives: ϑ = ϑu
∆
= ϑ0 + uϕn, where

ϕn = ϕn (ϑ0) ց 0 and u ∈ Θ+
n =

[
0, ϕ−1

n (b− ϑ0)
)
.

Asymptotical Statistics of Stochastic Processes (S.A.P.S.) XI – p.12/26



Pitman’s approach

Close or contiguous alternatives: ϑ = ϑu
∆
= ϑ0 + uϕn, where

ϕn = ϕn (ϑ0) ց 0 and u ∈ Θ+
n =

[
0, ϕ−1

n (b− ϑ0)
)
.

Rate: ϕn such that the normalized likelihood ratio

Zn,ϑ0(v) =
Ln

(
ϑ0 + vϕn, X

(n)
)

Ln
(
ϑ0, X(n)

) , v ∈ Θ+
n ,

has a non degenerate limit in D0(R+)
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Pitman’s approach

Close or contiguous alternatives: ϑ = ϑu
∆
= ϑ0 + uϕn, where

ϕn = ϕn (ϑ0) ց 0 and u ∈ Θ+
n =

[
0, ϕ−1

n (b− ϑ0)
)
.

Rate: ϕn such that the normalized likelihood ratio

Zn,ϑ0(v) =
Ln

(
ϑ0 + vϕn, X

(n)
)

Ln
(
ϑ0, X(n)

) , v ∈ Θ+
n ,

has a non degenerate limit in D0(R+): ϕn = ψ(ϑ0)
n r2n

in our case.
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Pitman’s approach

Close or contiguous alternatives: ϑ = ϑu
∆
= ϑ0 + uϕn, where

ϕn = ϕn (ϑ0) ց 0 and u ∈ Θ+
n =

[
0, ϕ−1

n (b− ϑ0)
)
.

Rate: ϕn such that the normalized likelihood ratio

Zn,ϑ0(v) =
Ln

(
ϑ0 + vϕn, X

(n)
)

Ln
(
ϑ0, X(n)

) , v ∈ Θ+
n ,

has a non degenerate limit in D0(R+): ϕn = ψ(ϑ0)
n r2n

in our case.

Problem: we have to choose between

H0 : u = 0,

H1 : u > 0.
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Pitman’s approach

Close or contiguous alternatives: ϑ = ϑu
∆
= ϑ0 + uϕn, where

ϕn = ϕn (ϑ0) ց 0 and u ∈ Θ+
n =

[
0, ϕ−1

n (b− ϑ0)
)
.

Rate: ϕn such that the normalized likelihood ratio

Zn,ϑ0(v) =
Ln

(
ϑ0 + vϕn, X

(n)
)

Ln
(
ϑ0, X(n)

) , v ∈ Θ+
n ,

has a non degenerate limit in D0(R+): ϕn = ψ(ϑ0)
n r2n

in our case.

Problem: we have to choose between

H0 : u = 0,

H1 : u > 0.

Power: power function of ψ̄n is β(ψ̄n, u) = E
(n)
ϑu
ψ̄n

(
X(n)

)
, u > 0.
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Limits of the likelihood ratio

Limit under hypothesis: under ϑ = ϑ0, the limit of the normalized

likelihood ratio Zn,ϑ0 is

Z0(v) = exp

{
W (v)− v

2

}
, v > 0,

where W is a standard Brownian motion (Wiener process).
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Limits of the likelihood ratio

Limit under hypothesis: under ϑ = ϑ0, the limit of the normalized

likelihood ratio Zn,ϑ0 is

Z0(v) = exp

{
W (v)− v

2

}
, v > 0,

where W is a standard Brownian motion (Wiener process).

Limit under alternative: under ϑ = ϑu (with any fixed u > 0), the

limit of the normalized likelihood ratio Zn,ϑ0 is

Z
(u)
0 (v) = exp

{
W (v)− |v − u|

2
+
u

2

}
, v > 0,

where W is a standard Brownian motion (Wiener process).
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Wald’s test

The maximum likelihood estimator (MLE) ϑ̂n is now given by

max
{
Ln

(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}
= sup

ϑ∈[ϑ0,b)

Ln
(
ϑ,X(n)

)
.
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Wald’s test

The maximum likelihood estimator (MLE) ϑ̂n is now given by

max
{
Ln

(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}
= sup

ϑ∈[ϑ0,b)

Ln
(
ϑ,X(n)

)
.

The Wald’s test (WT) is based on the MLE ϑ̂n and is defined by

φ◦
n

(
X(n)

)
= 1{ n r2n

ψ(ϑ0)
(ϑ̂n−ϑ0)>mε}

with mε solution of

∫ +∞

mε

(
1√
2πt

exp
{
−t/8

}
− 1

2
Φ
(
−
√
t/2

))
dt = ε,

where Φ is the distribution function of N (0, 1).
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Properties of the WT

The test φ◦
n belongs to Kε.
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Properties of the WT

The test φ◦
n belongs to Kε.

The power function of φ◦
n converges to β◦(u):

β(φ◦
n, u) −→ β◦(u),

where

β◦(u) = P {ξu > mε − u} , Z0(ξu) = sup
v>−u

Z0(v)

and/or

β◦(u) = P
{
ξ
(u)
+ > mε

}
, Z

(u)
0

(
ξ
(u)
+

)
= sup

v>0
Z

(u)
0 (v).
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General likelihood ratio test
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General likelihood ratio test

The general likelihood ratio test (GLRT) is defined by

φ̂n
(
X(n)

)
= 1{Q(X(n))>1/ε}

with

Q
(
X(n)

)
= sup

ϑ∈[ϑ0,b)

Ln
(
ϑ,X(n)

)

Ln
(
ϑ0, X(n)

)

=
max

{
Ln

(
ϑ̂n+, X

(n)
)
, Ln

(
ϑ̂n−, X(n)

)}

Ln
(
ϑ0, X(n)

) .
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Properties of the GLRT
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Properties of the GLRT

The test φ̂n belongs to Kε.
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Properties of the GLRT

The test φ̂n belongs to Kε.

The power function of φ̂n converges to β̂(u):

β(ψ̂n, u) −→ β̂(u),

where

β̂(u) = P{Ẑu > 1/ε}, Ẑu =
(
Z0 (−u)

)−1
sup
v>−u

Z0(v)

and/or

β̂(u) = P{Ẑ(u)
+ > 1/ε}, Ẑ

(u)
+ = sup

v>0
Z

(u)
0 (v).
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First Bayes test

The Bayes estimator (BE) ϑ̃n (for square loss and) for a given prior

density p is now given by

ϑ̃n =

∫ b
ϑ0
ϑ p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

∫ b
ϑ0
p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

.
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First Bayes test

The Bayes estimator (BE) ϑ̃n (for square loss and) for a given prior

density p is now given by

ϑ̃n =

∫ b
ϑ0
ϑ p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

∫ b
ϑ0
p(ϑ)Ln

(
ϑ,X(n)

)
dϑ

.

The first Bayes test (BT1) is a Wald-type test based on the BE ϑ̃n and

is defined by

φ̃n
(
X(n)

)
= 1{ n r2n

ψ(ϑ0)
(ϑ̃n−ϑ0)>kε}

with kε solution of

P {ζ+ > kε} = ε, ζ+ =

∫ +∞

0
v Z0(v) dv∫ +∞

0
Z0(v) dv

.
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Properties of the BT1
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Properties of the BT1

The test φ̃n belongs to Kε.
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Properties of the BT1

The test φ̃n belongs to Kε.

The power function of φ̃n converges to β̃(u):

β(φ̃n, u) −→ β̃(u),

where

β̃(u) = P {ζu > kε − u} , ζu =

∫ +∞

−u
v Z0(v) dv∫ +∞

−u
Z0(v) dv

and/or

β̃(u) = P{ζ(u)+ > kε}, ζ
(u)
+ =

∫ +∞

0
v Z

(u)
0 (v) dv

∫ +∞

0
Z

(u)
0 (v) dv

.
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Second Bayes test

For a test φ̄n, the mean (or averaged) power is

β(φ̄n) =

∫ b

ϑ0

β(φ̄n, ϑ) p(ϑ)dϑ.
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Second Bayes test

For a test φ̄n, the mean (or averaged) power is

β(φ̄n) =

∫ b

ϑ0

β(φ̄n, ϑ) p(ϑ)dϑ.

The second Bayes test (BT2) is the test which maximizes the mean

power and is defined by

φ̃⋆n
(
X(n)

)
= 1{R(X(n))>gε}

with

R
(
X(n)

)
=
n r2n

∫ b
ϑ0
Ln

(
ϑ,X(n)

)
p(ϑ) dϑ

p(ϑ0)ψ(ϑ0)Ln
(
ϑ0, X(n)

)

and gε solution of

P{Z̃+ > gε} = ε, Z̃+ =

∫ +∞

0

Z0(v) dv.
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Properties of the BT2
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Properties of the BT2

The test φ̃⋆n belongs to Kε.
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Properties of the BT2

The test φ̃⋆n belongs to Kε.

The power function of φ̃⋆n converges to β̃⋆(u):

β(φ̃⋆n, u) −→ β̃⋆(u),

where

β̃⋆(u) = P{Z̃u > gε}, Z̃u =
(
Z0(−u)

)−1
∫ +∞

−u

Z0(v) dv

and/or

β̃⋆(u) = P{Z̃(u)
+ > gε}, Z̃

(u)
+ =

∫ +∞

0

Z
(u)
0 (v) dv.
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Numerical simulations
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Numerical simulations

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 6 t 6 4.
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Numerical simulations

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 6 t 6 4.

ϑ0 = 2 and Θ = [2, 4).
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Numerical simulations

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 6 t 6 4.

ϑ0 = 2 and Θ = [2, 4).

ϕn =
ψ(ϑ0)

n r2n
=

1.5√
n

.
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Numerical simulations

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 6 t 6 4.

ϑ0 = 2 and Θ = [2, 4).

ϕn =
ψ(ϑ0)

n r2n
=

1.5√
n

.

prior distribution for BT1: uniform on [2, 4).
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Numerical simulations

λ
(n)
ϑ (t) = 1.5 + n−0.25

1{t>ϑ}, 0 6 t 6 4.

ϑ0 = 2 and Θ = [2, 4).

ϕn =
ψ(ϑ0)

n r2n
=

1.5√
n

.

prior distribution for BT1: uniform on [2, 4).

some thresholds for WT and BT1:

ε 0.001 0.005 0.01 0.05 0.1 0.2

mε 30.336 20.686 14.886 7.282 4.531 2.236

kε 24.877 17.588 16.782 8.582 5.573 3.024
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Likelihood ratio
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Likelihood ratio
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Likelihood ratio
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Some realization of Zn,ϑ0
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Convergence of power functions
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Convergence of power functions
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Convergence of power functions
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Convergence of power functions of the GLRT, of the WT and of the BT1
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Comparison of limit power functions
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Comparison of limit power functions
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Comparison of limit power functions
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