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Statistical problem

This talk is connected with nonparametric estimation of the function s(t)
as the observation process y(t) is given by

dy(t) = s(t)dt+ dx(t), t ∈ [−T, T ].

Here unknown function s lies in a compact subset L∗ of the Banach space L
with the norm ∥ · ∥L,

∥s∥2L = sup
x

x+1∫
x

|s (t) |2 dt. (1)

The noise process x(t) is the gaussian process with stationary increments with
zero mean and with the spectral density f .

For a suitably chosen countable set Ψ of functions ψ, suppψ ∈ [−T, T ], we
consider a discrete version of the statistical problem as we observe

[y, ψ] = [s, ψ] + [x, ψ] , ψ ∈ Ψ, (2)
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where

[y, ψ] =

∞∫
−∞

ψ(t) dy(t), [s, ψ] =

∞∫
−∞

ψ(t) s(t) dt, [x, ψ] =

∞∫
−∞

ψ(t) dx(t),

For an estimator ŝT of unknown function s we denote

RT (ŝT , f) = sup
s∈L∗

Es,f ∥ŝT − s∥2L ,

and by RT (f) we denote the minimax risk,

RT (f) = inf
ŝT

sup
s∈L∗

Es,f ∥ŝT − s∥2L .

One of the problems that we plan to discuss is how to choose in a reasonable
way a system Ψ of functions ψ so as not to lose much in the rate of decrease
in risk RT (ŝT , f), as we assume that the spectral density f is unknown.
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Stationary process and orthogonal projection operator

Let x(t) be a gaussian process with zero mean Ex(t) = 0 and stationary
increments. We use the notation

x[φ] =

∞∫
−∞

φ(t) dx(t).

The linear operator x[φ] is defined in the usual way on the indicator functions:

x
[
1[a,b]

]
= x(b)− x(a),

and well defined on linear span S of all such functions. The expected value of
|x [φ]|2 does not depend on the shift operator:

E |x [φ(·)]|2 = E |x [φ(·+ τ)]|2 ,

and therefore there exists a nonnegative measure µ such that

E |x [φ(·)]|2 =

∞∫
−∞

|φ̂|2 dµ. (3)
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Here φ̂(u) is the Fourier transform of φ,

φ̂(u) =

∞∫
−∞

φ(t)eitu dt,

and the spectral measure µ satisfies to the condition

∞∫
−∞

µ(du)

1 + u2
<∞.

We assume that process x has the spectral density f . This means that

E |x[φ]|2 =

∞∫
−∞

|φ̂(u)|2 f(u) du.

For a nonnegative function f which is defined on R, denote by L2
f the Hilbert
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space with the inner product (·, ·)f and the norm ∥·∥f ,

(h1, h2)f =

∞∫
−∞

h1(u)h2(u) f(u) du, ∥h∥2f = (h, h)f .

In the case as f ≡ 1, we use the notation L2 instead of L2
1, and (·, ·), ∥·∥

instead of (·, ·)1, ∥·∥1.
The linear operator x[φ] defined on S can be extended to Df ,

Df =
{
φ : φ ∈ L2

loc, φ̂ ∈ L2
f

}
, (4)

where L2
loc is the set of locally square summable functions. Denote H(x) the

subspace of the space L2(dP ) generated by random variables x[φ], φ ∈ Df .
The relation

π x[φ] = φ̂

determines an isometry π : H(x) → L2
f . This allows to translate many of

the problems of geometry in the space H(x) into the appropriate analytical
problems in the space L2

f .
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Orthoprojector on HT (x) in the space L2(dP )

Denote HT (x) the subspace of the space H(x) generated by random vari-
ables x[φ], suppφ ∈ [−T, T ]. The subspace of the space L2

f corresponding to
the mapping π is denoted by HT (f) : HT (f) = πHT (x). In the case as

∞∫
−∞

f(u)

1 + u2
du <∞

the subspace HT (f) = πHT (x) coincides with the closure of the linear span
of the set {

1− etu

u
, |t| ≤ T

}
since π x

[
1[a,b]

]
=
ebu − eau

u
.

Denote PT (f) the orthoprojector (in the metric of the space L2(dP ) ) onto
HT (x). Let PT (f) be the orthoprojector on HT (x) in the space L2

f . It is very
difficult to construct the analytical representation of the operators PT (f) or
PT (f) for general spectral density f .
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But in the case as f ≡ 1 the process x(t) is a process with orthogonal
increments. Therefore for any random variable ξ,

ξ =

∞∫
−∞

φ(t) dx(t), we have PT (f) ξ =

T∫
−T

φ(t) dx(t) = x
[
1
[T ,T ]φ

]
.

In other words in the case as f ≡ 1 for the process x [φ] , φ ∈ Df ,

PT (f)x [φ] = PT x [φ] := x
[
1
[T ,T ]φ

]
=

(
1
[T ,T ]x

)
[φ] . (5)

It is easy to see that in this case

PT (f)h (v) = PT h (v) :=

∞∫
−∞

sinT (v − u)

π(v − u)
h(u) du. (6)

The problem that will interest us in this section is the following: under
what conditions on spectral density f the operator PT gives a good approxi-
mation for the operator PT (f).
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More precisely, we want to find conditions on the spectral density f for
which

E (x[φ]− PT x[φ])
2 ≤ C E (x[φ]− PT (f)x[φ])

2
, (7)

with constant C = C(f) which depends only on f .

Clearly, that

E (x[φ]− PT x[φ])
2 ≥ E (x[φ]− PT (f)x[φ])

2
.

Passing to the operator norm ∥·∥L2(dP ) in space L2(dP ), we must find out
when

∥I − PT∥L2(dP ) ≤ C(f) ∥I − PT (f)∥L2(dP ) = C(f). (8)

Evidently, we must find out when

∥PT∥L2(dP ) ≤ c(f), (9)

with constant c(f) which depends only on f .
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Orthoprojector on HT (f) in the space L2
f

Now we want to move to the corresponding analytic problem in the space
L2
f .
We recall that

PTx[φ] = x[1
[−T ,T ]φ], and π x[φ] = φ̂.

Hence,

π PT π
−1 = PT h (v) :=

∞∫
−∞

sinT (v − u)

π(v − u)
h(u) du. (10)

Since the operator PT (acting in space L2(dP )) and the operator PT (acting
in space L2

f ) are unitarily equivalent, then the condition (9) (described in the
previous section) are equivalent to the condition

∥PT∥L2
f
≤ c(f), (11)

where ∥·∥L2
f
is the operator norm in the space L2

f .
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We use notation H2
+ for the Hardy space of analytic functions in the upper

half-plane. For our purposes, we can think that H2 is the subspace of the
space L2 which consists of functions g which is representable in the form

g(u) =

∞∫
0

eiut φ(t) dt.

For t > 0 we denote by H2
+(t) the subspace of the space L2 which consists of

functions g which is representable in the form

g(u) =

t∫
0

eiut φ(t) dt.

Let P+ be the operator of orthogonal projection in L2 onto H2
+, P

+(t) be
the operator of orthogonal projection onto H2

+(t), P
− = I − P+.
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Recall that the operator PT ,

PT h (v) =

∞∫
−∞

sinT (v − u)

π(v − u)
h(u) du,

is the operator of orthogonal projection (in the metric of the space L2) onto
subspace HT which consists of functions g which is representable in the form

g(u) =

T∫
−T

eiut φ(t) dt.

Let ϵt be the operator of multiplication by the function ϵt(u) = eitu. It is clear,
that P+(2T ) = ϵT PT ϵ−T . Since operators P+(2T ) and PT are unitarily
equivalent in the space L2

f , for any nonnegative function f , then the condition
(11) is equivalent to the condition

sup
T>0

∥∥P+(2T )
∥∥
L2

f

<∞. (12)
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From the last condition we obtain that∥∥P+
∥∥
L2

f

<∞, (13)

and using the equality

P+(2T ) = ϵ2T P
− ϵ−2T = ϵ2T (I − P+) ϵ−2T ,

we deduce that (12) and (14) are equivalent.

Let H denote the Hilbert transform,

H g(x) =
1

π
p.v.

∞∫
−∞

g(t)

x− t
dt := lim

ε→0

1

π

∫
|x−t|>ε

g(t)

x− t
dt.

The operator H admits the representation

H = −iP+ + iP− = iI + 2iP+.
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The question we are interested here is under what condition on f the operator
H is bounded in the weighted space L2

f .

The answer is well known. The famous Hunt-Mackenhoupt-Wheeden the-
orem (1973) says that the Mackenhoupt condition

sup
I

1

|I|

∫
I

f(u) du
1

|I|

∫
I

1

f(u)
du <∞

is necessary and sufficient for the boundedness of H in weigthed space.

Since H = iI − 2iP+, then the Mackenhoupt condition is is necessary and
sufficient for the boundedness of operator P+ in weighted space, and therefore
for the uniform on T > 0 boundedness of the operators PT in weighted space
L2
f . Recall that the operator PT (acting in space L2(dP )) and the operator PT

(acting in space L2
f ) are unitarily equivalent. We obtain the following theorem.
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Theorem. Let x be a process with stationary increments with spectral density
f . Then

E (x[φ]− PT x[φ])
2 ≤ C E (x[φ]− PT (f)x[φ])

2
, (14)

with constant C = C(f) which depends only on f if and only if the spectral
density f satisfies to the Mackenhoupt condition.
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Statistical data

Throughout the talk we consider nonparametric estimation of the function
s(t) as the observation process y(t) is given by

dy(t) = s(t)dt+ dx(t), t ∈ [−T, T ].

Here unknown function s ∈ L∗ ⊂ L , where L is the Banach space with the
norm ∥ · ∥L,

∥s∥2L = sup
x

x+1∫
x

|s (t) |2 dt <∞. (15)

As the parametric set L∗ we take L∗ = L (Λ;β), where L (Λ;β) is the subset
of the Stepanov class L (Λ) of pseudoperiodic functions

s(t) =
∑
u∈Λ

a(u)eiut,
∑
u∈Λ

|a(u)|2 <∞, (16)
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which is defined by the condition∑
u∈Λ

(1 + |u|)2β |a(u)|2 ≤ C, (17)

Λ is a countable subset of real line such that

κ = κ(Λ) = inf
u,v∈Λ, u ̸=v

|u− v| > 0. (18)

That is we assume that different points of the spectral set Λ are uniformly
separated. Under this condition in the subspace L (Λ) of the Banach L there
are two Hilbert norm which are topologically equivalent to the original norm
∥ · ∥L . Namely, for function s ∈ L (Λ),

s(t) =
∑
u∈Λ

a(u)eiut,

denote

∥s∥2∗ =
∑
u∈Λ

|a(u)|2, ∥s∥2T =
1

2T

T∫
−T

|s(t)|2 dt.
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R. Paley, N. Wiener (1932) proved that, for s ∈ L (Λ), κ(Λ) > 0,

c1∥s∥∗ ≤ ∥s∥L ≤ C1∥s∥∗, (19)

and, for T > T0(κ),
c2∥s∥T ≤ ∥s∥L ≤ C2∥s∥T . (20)

Here c1, c2, C1, C2 – positive constant depend only on κ = κ(Λ).

For some technical reasons it is more convenient to investigate the accuracy
of the estimation in the norm ∥ · ∥∗. For an estimator ŝT of unknown function
s we denote

R∗
T (ŝT ;β; f) = sup

s∈L∗

Es,f ∥ŝT − s∥2∗ ,

and by R∗
T (β; f) we denote the minimax risk,

R∗
T (β; f) = inf

ŝT
sup
s∈L∗

Es,f ∥ŝT − s∥2L .

It is clear that, under the condition κ(Λ) > 0,

cR∗
T (ŝT ;β; f) ≤ RT (ŝT ;β; f) ≤ C R∗

T (ŝT ;β; f) , (21)
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and
cR∗

T (β; f) ≤ RT (β; f) ≤ CR∗
T (β; f) . (22)

Here constants c, C depend only on κ. Recall, that RT (ŝT ;β; f) ,RT (β; f)
are risk and minimax risk, as we measure the accuracy of the estimation in
the norm ∥ · ∥L .

Let L2
T be the L2−space on the interval [−T, T ] constructed by the nor-

malized Lebesque measure, and ∥ · ∥T , (·, ·)T are the norm and scalar product
in L2

T .
Below we use the notation

y[ψ] =
1

2T

∫ T

T

ψ(t) dy(t), s[φ] =
1

2T

∫ T

T

ψ(t) s(t) dt, x[φ] =
1

2T

∫ T

T

ψ(t) dx(t).

We want to choose in a optimal way a countable set Ψ and continue estimating
in a discrete scheme, as we observe

y[ψ] = s[ψ] + x[ψ], ψ ∈ Ψ,

and try to construct an estimator ŝ for unknown s ∈ L on data {y[ψ], ψ ∈ Ψ}.
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Denote φu(t) = eiut. Introduce the countable set of function
Φ = {φu, u ∈ Λ}. The system Φ is the Riesz basis of the subspace L (Λ)
(more precisely the restriction of a subspace L (Λ) on interval [−T, T ]) in the
metric of the space L2

T ). There is the conjugate system ΨT = {ψu, u ∈ Λ},
which is defined by

(φu, ψv)T = δu,v.

Therefore, for function s(t) =
∑
u∈Λ

a(u)eiut,

(s, ψu)T = a(u).

Therefore,
y [ψu] = a(u) + x [ψu] , u ∈ Λ. (23)

It should be noted that the functions ψu = ψT
u depend on T and the system

ΨT is uniquely determined only if we require that

ψT

u ∈ 1
[−T ,T ]L (Λ), u ∈ Λ.
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In this case, under condition κ(Λ) > 0, the following inequality holds

∥ψT

u∥T ≤ C(κ).

On observations

y [ψu] = a(u) + x [ψu] , u ∈ Λ (24)

we will construct an estimate âT = (âT (u), u ∈ Λ) of the coefficient vector
a = (a(u), u ∈ Λ), and then will construct an estimate

ŝT (t) =
∑
u∈Λ

âT (u)e
iut,

using a priori information that∑
u∈Λ

|a(u)|2 (1 + |u|)2β ≤ C. (25)

Since ∥s − ŝT∥2∗ = ∥âT − a∥22 :=
∑
u∈Λ

|âT (u) − a(u)|2, we have almost the

same statistical problem as the initial one.
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However, with a small loss of information: we do not use observations y[ψ],
as s[ψ] = 0, for all s ∈ L (Λ).

We denote the minimax risk RT (β; f) in the problem of estimating the
vector a described above, and give the conditions under which the loss of in-
formation mentioned above will not be catastrophic.

Theorem. Suppose that κ(Λ) > 0, β > 0, and the spectral density f of
process x satisfies to the condition

λ(f) := sup
I

1

|I|

∫
I

f(u) du
1

|I|

∫
I

1

f(u)
du <∞. (26)

Then
cRT (β; f) ≤ RT (β; f) ≤ CRT (β; f), (27)

where positive constants c, C depend only on κ(Λ), λ(f).
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Discrete model

Let us consider in detail the problem of estimating an unknown vector
a = (a(u), u ∈ Λ) from observations

Yu = a(u) +Xu, u ∈ Λ, a ∈ Θ. (28)

Here X = (Xu, u ∈ Λ) is a gaussian vector with zero mean and EXu = σ2
u.

Denote σ =
(
σ2
u, u ∈ Λ

)
and let R(Θ;σ) be the mimimax risk.

In the case that interests us the set Θ is defined by∑
u∈Λ

|a(u)|2 (1 + |u|)2β ≤ C; (29)

Xu = x [ψT

u ] , where the system Ψ = {ψT
u , u ∈ Λ} (30)

is defined by

1

2T

T∫
−T

ψT

u(t) e
−ivt dt = δu,v,
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and the Gaussian process x has zero mean and spectral density f . So, the
random variables Xu are gaussian with zero mean and

σ2
u := EX2

u =
1

4T 2

∞∫
−∞

|ψ̂T

u(z)|2 dz.

The case, when {Xu, u ∈ Λ} are independent Gaussian variables, and Θ
is compact centrally symmetric subset of the space l2 was well investigated
( I. Ibragimov and R. Hasminskii (1984), D. Donoho and all (1990)). The pos-
sibility of transition to dependent variables is given by the following lemma
which belong to S. Reshetov.

Lemma 1. Let X = (Xu, u ∈ Λ) be a Gaussian vector with zero mean. Sup-
pose that there exists a constant c(X) such that for any finite set {a(v), v ∈ Λ}

E |Xu −
∑
v ̸=u

a(v)Xv|2 ≥ c(X)E|Xu|2. (31)
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Then there exists a constant C > 0 which depend only on c(X) that

C
∑
u∈Λ

τ2u ∧ σ2
u ≤ R(Θ;σ) (32)

Choice of conjugate system

Note that if κ(Λ) > 0, then, for T > T0, the operator of multiplication
by the indicator function 1[−T,T ] (t) Is a bounded and boundedly invertible
operator from L (Λ) (considered as a subspace of a Banach space L ) into the
subspace of space L2

T , which defined by LT (Λ) = 1[−T,T ] L (Λ). In the future,
it will be convenient for us to assume that all functions from L2

T are equal to
zero outside the interval [−T, T ].

We use the notation

φu(T ; t) = 1[−T ,T ](t) e
iut.

Let {gr
u, u ∈ Λ} be the system, from the space Lr(Λ), which is conjugate to
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the system {φu(r; ·), u ∈ Λ}. That is

r∫
−r

gr

u(t) e
−ivt dt = 2rδu,v if v ∈ Λ.

For a fixed r > T0 and T > r, we define the new system {ψT
u , u ∈ Λ} by

ψT

u(t) =
T

2r(T − r)

∞∫
−∞

gru(t− s)φu(T − r; s) ds. (33)

Lemma 2. Functions ψT
u ∈ L2

T , and, for v ∈ Λ,

1

2T

T∫
−T

ψT

u(t) e
−ivt dt = δu,v. (34)
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Class K of spectral densities

For α > −1, β > 1 and 0 < b ≤ B, we introduce the class A(α, β; b, B) of
spectral densities by the conditions

b εα ≤

∑
u∈Λ, |u|≤m

fε(u) (1 + |u|)2β∑
u∈Λ, |u|≤m

(1 + |u|)2β
,

1

N(m)

∑
u∈Λ, |u|≤m

fε(u) ≤ B εα. (35)

Here N(m) is the number of points from Λ, contained in the interval [−m,m].

Class of spectral densities K = K (α, β; b,B);λ) Is distinguished from the
class A(α, β; b,B) be the condition

λ(f) ≤ λ <∞. (36)
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Condition on spectral set Λ

We assume that
κ(Λ) = inf

u,v∈Λ, u ̸=v
|u− v| > 0

and points of the spectral set Λ in the following sense regular distributed over
large intervals [−m,m]: for positive c and m > m0,

m2β+1 ≤
∑

u∈Λ, |u|≤m

(1 + |u|)2β . (37)

The class of such spectral sets will be denoted by B(β;κ)
Asymptotically optimal estimate

Let the estimator ŝT is defined by

ŝT =
∑

u∈L ,|u|≤m(T )

âT (u), (38)

where m(T ) = T
1+α
1+2β , and âT (u) is unbiased estimator of the coefficient a(u),

âT (u) = y[ψT

u ],
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which is constructed on the specially selected the conjugate system Ψ =
{âT (u), u ∈ Λ},

ψT

u(t) =
T

2r(T − r)

∞∫
−∞

gru(t− s)φu(T − r; s) ds.

Theorem. Suppose unknown function s ∈ L (Λ;β), x Gaussian process with
zero mean and spectral density f ∈ A(α, β; b,B), spectral set Λ belongs to the
class B(β;κ). Then, for positive constant c, C,

cRT (ŝT ;β) ≤ RT (β) ≤ C T− (1+α)(2β)
1+2β . (39)
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Vector valued stationary process

Let f be a d×dmatrix weight, that is a function on real line IR whose values
are selfadjoint nonnegative matrices. We define a weighted space L2(f) as the
space of all measurable Cd-valued functions on R satisfying to the condition

∥g∥L2(f) =

∞∫
−∞

(
f(u)g(u), g(u)

)
du <∞. (40)

We will use the notation L2(Cd), as f is identity matrix. So, L2(Cd) is the
space of square summable functions on real line with values in Cd. We de-
note H2(Cd) the corresponding Hardy space of analytic functions. For our
purposes, we can think that H2 is the subspace of L2(Cd) which consists of
functions g = (g1, . . . , gd) with coordinate which is representable in the form

g(u) =

∞∫
0

eiut φ(t) dt.
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We shall use the same notation, as in the case d = 1. Let P+ be the or-
thogonal projection in L2 onto H2, P− = I − P −+.

Consider the Hilbert Transform,

H = −iP+ + iP− = iI + 2iP+.

S. Treil and A. Volberg proved (1995) that vector Muckenhoupt condition

sup
I

∥∥∥∥∥∥∥
 1

|I|

∫
I

f(u) du

1/2  1

|I|

∫
I

f−1(u) du

1/2
∥∥∥∥∥∥∥ <∞. (41)

is necessary and sufficient for the boundedness of Hilbert Transform H in
L2(f) with matrix weight.

Estimation problem in vector valued case

Now consider the case, as we observe vector valued process y(t) = (y1(t), y2(t))
which is given by

dy1(t) = s1(t)dt+ dx1(t), t ∈ [−T, T ],
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dy2(t) = s2(t)dt+ dx2(t), t ∈ [−T, T ],

Here unknown functions sj ∈ L∗(j) ⊂ L (Λj), j = 1, 2,

L∗(j) is the subset of the Stepanov space L (Λj) of pseudoperiodic functions

s(t) =
∑
u∈Λ

a(u)eiut, defined by
∑
u∈Λ

(1 + |u|)2βj |a(u)|2 ≤ C, (42)

The noise process x(t) = (x1(t), x2(t)) is the gaussian process with station-
ary increments with zero mean and with the spectral density f .

We consider the problem of estimating function s1 with nuisance parame-
ters s2, and denote by RT (f) the minimax risk of this estimation problem.

More precisely, we consider a simple but non-trivial case when

f(u) =

 1 p(u)

p(u) 1

 . (43)

0-31



0-32

Theorem . Suppose Λ1 ∩Λ2 = 0, β1 = β2 = β, spectral density f satisfies to
the vector Muckenhoupt condition. Then

RT (f ;β) ≤ CRT (1− |p|2;β).
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